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Gökberk Koçak University of St Andrews, UK

Fanghui Liu University of Connecticut, USA

Giovanni Lo Bianco IMT Atlantique, France
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Deriving filtering algorithms from dedicated
algorithms: zoom on the Bin Packing problem

Arthur Godet(1), Xavier Lorca(2), and Gilles Simonin(1)
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FR-44307 Nantes Cedex 3, France
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Abstract. Solving NP-complete problems can be tough because of the
combinatorics. Constraint Programming and Approximation algorithms
can be used to solve these problems. In this paper, we explore how to au-
tomatically derive filtering algorithms from a dedicated algorithm solving
the Bin Packing problem. To this end, we automatically derive a filter-
ing algorithm from the Best-Fit algorithm. We empirically show that
our filtering algorithm BF-Prop is experimentally strictly more efficient
in terms of filtering than Shaw’s state-of-the-art global constraint.

Keywords: constraint programming, approximation algorithms, filter-
ing algorithms, bin packing problem

1 Introduction

Industrial systems have become more and more complex, making it harder for
humans to take informed decisions. The need to mathematically model these
systems, and more particularly the problems they include, rapidly arose. Artifi-
cial Intelligence fields arose as well in order to build backgrounds and theories
for scientifically solving these problems.

Constraint Programming suffers from a lack of precision to define consis-
tencies, i.e. the efficiency with which filtering algorithms remove values from
variables’ domains. Indeed, there exist only a few consistencies, which form a
discontinuous hierarchy. On the other hand, Approximation algorithms are also
used to solve Optimisation problems, but benefit from a very precise measure
of their efficiency. More accurately, the different classes of Approximation algo-
rithms form a continuum.

In this paper, we explore the possibility to automatically build a filtering
algorithm from a dedicated algorithm for a well-known problem which has many
applications, either pure or as a constraint in a more complex problem: the Bin
Packing problem. The Bin-Packing satisfaction problem is known to be NP-
complete, while the optimisation one is NP-hard and benefits from strong
results in Approximation [6] as well as the existence of a global constraint [3].



In section 2, we define the notions and mechanisms of Constraint Program-
ming and Approximation that we use in the following sections. Third section
presents the Bin Packing problem as well as state of the art results in both
fields for this particular problem. In section 4, we explain how we automatically
derive a filtering algorithm from an approximation one. Section 5 describes the
experimentations we ran as well as the results we obtained. Finally, section 6
concludes by presenting further research in this area.

2 Constraint Programming and Approximation
Definitions

Constraint programming material. Resolving Constraint Optimisation Problems
(COP) is challenging for the Constraint Programming community. This is true
particularly when considering an industrial point of view for which finding a
good trade-off between time complexity and the solution quality is essential. As
described by Christian Bessière in [2], a Constraint Satisfaction Problem (CSP)
is composed of a finite sequence of integer variables, denoted V , each one having
a domain in Z, denoted D, and of a set of constraints, denoted C. A constraint is
a relation defined on a set of variables that is satisfied by a set of combinations,
called tuples. That is to say a vector of Zn (n being the number of variables in
the scope of the constraint), each variable assigned to a value of its domain. For
instance, the constraint 2 ≤ x + y + z, with x, y and z taking their value in
{0, 1}, is satisfied by the tuples (1, 1, 0), (1, 0, 1), (0, 1, 1) and (1, 1, 1). A solution
for a given CSP is an instantiation of all the variables to the values such that all
the constraints are simultaneously satisfied. In this context, a COP is a natural
extension of a CSP by adding an objective function which is a specific constraint.
This constraint has a form z = f(A) such that A ⊆ V and z denotes the objective
variable. The aim of the COP is to find a solution optimising (e.g., minimising
or maximising) the value affected to the variable z.

Once a CSP (resp. COP) is expressed, a specific algorithm, called a solver,
will try to solve it by interlacing constraint propagation with a backtracking al-
gorithm. In the following, current state of the problem refers to the domains
of the variables after the constraints have removed some values due to former
decisions. If the domain of a variable is reduced to one value, this variable is said
to be instantiated. The set of all instantiated variables is called a partial instan-
tiation if not all the variables of the problem are instantiated, and a solution if
no constraint is violated. During the solving phase, the solver will call propaga-
tors, also called filtering algorithms, in order to remove inconsistent values from
variables’ domain, i.e. values that can not lead to a solution from the current
state. Most of the time there is a one-to-one correspondence between constraints
and propagators. However, in some cases, several propagators can be associated
with one constraint.

Each time a value is removed from the domain of a variable, all the con-
straints that have this variable in their scope are called by the solver, i.e. all the
corresponding filtering algorithms will run in order to remove values that can



not lead to a solution from the new current state according to these filtering
algorithms. This process will be applied until no more deductions can be made
by the filtering algorithms, i.e. no more values can be logically removed from the
domains of the variables with respect to the efficiency of the filtering algorithms.
This particular situation is called fixpoint.

There exist several consistencies in the literature that represent the effi-
ciency of the propagators. In [2], Christian Bessiére defines and classes more
than a dozen consistencies, from the Path Consistency to the Forward Checking
(respectively the strongest and the weakest of the consistencies), passing by the
Generalised Arc Consistency (GAC), which is considered as a reference when
comparing different consistencies as it is a well-known and well-studied consis-
tency. A consistency is stronger than another one if it filters at least all the
values filtered by the second one.

The Generalised Arc Consistency (GAC) guarantees that every value still in
the variables’ domain is present in one tuple, this for every constraint. Neverthe-
less, the GAC does not guarantee that the tuples are globally possible from the
current state. The Generalised Arc Consistency can be time-costly to guarantee,
so one can prefer to apply the Bounds Consistency (BC) which consists in guar-
anteeing the GAC only on the bounds of the domain of the variables instead of
the entire domain. Thus, the BC is weaker than the GAC.
For a given constraint, there can exist several filtering algorithms, each one hav-
ing its own consistency. Generally, there does not exist a filtering algorithm for
every consistency. But when this is the case, it offers the user a trade-off between
time-complexity and efficiency of filtering, as stronger consistencies generally
have higher time-complexities.

Approximation material. On the other hand, Approximation algorithms are
polynomial-time algorithms designed to solve specific problems. Thus, for a given
NP-complete or NP-hard problem, an approximation algorithm will return a
solution whose distance to the optimal can be mathematically measured. If the
solutions returned by the algorithm can be bounded by a ratio ρ for a given
measure, then the algorithm is said to be a ρ-approximation algorithm. There
exist several classification of approximation algorithms depending on the used
measure and the efficiency of the algorithms. For instance, an approximation al-
gorithm is a polynomial-time approximation scheme (PTAS) if, for a parameter
ε > 0, the approximation algorithm’s ratio is 1 + ε.

The low time complexity of these algorithms can be very useful. It is in-
teresting to explore the potential learnings one can make from approximation
theory to generate new efficient filtering rules for Constraint Programming. In
the new section, we will present a classic problem from literature on which we
can develop this approach.

3 A practical case: the Bin Packing Problem

The Bin Packing (BP) problem is composed of a fixed number of objects with
different sizes and a set of bins. The satisfaction Bin Packing problem consists



in checking if it is possible to store all the objects in k bins. The optimisation
Bin Packing problem searches the smallest number of bins that contain all the
objects. This problem has been highly studied in the literature, and is a speci-
fication of the Generalised Assignment Problem (GAP). In [7] it is shown that
the satisfaction BP problem is NP-complete . The optimisation version of the
problem is known to be NP-hard . Using binary variables, a first mathematical
model can be given:

opt = min
n∑

i=1

yi (1)

n∑
j=1

ajxij ≤ Byi, i ∈ [1, n] (2)

n∑
i=1

xij = 1, j ∈ [1, n] (3)

yi ∈ 0, 1, i ∈ [1, n] (4)
xij ∈ 0, 1, i ∈ [1, n], j ∈ [1, n] (5)

with 1 ≤ B being the capacity of the bins, yi = 1 if the bin i is used (0
otherwise) and xij = 1 if the object j is in the bin i (0 otherwise), and aj is the
weight of the object j.

3.1 Results from Constraints Programming

The high difficulty of the BP problem leads to few approaches in Constraints.
However, in [3] Paul Shaw presents a filtering algorithm A for the Bin Packing
problem.

Let O (resp. B) be the set of objects (resp. bins) in BP. We use one integer
variable xi per object oi from O. The domain of each xi represents all the
potential bins to store oi. We also use one integer variable lj per bin bj from B
representing the load of the bin bj . The filtering algorithm A filters values in the
domains of the variables xi and lj that lead to a certain fail. Indeed, as Shaw
explained in [3], guaranteeing that the filtering algorithm is GAC is already a
NP-hard problem in the case of the Bin Packing problem. Thus Shaw’s filtering
algorithm can not guarantee the GAC. Nevertheless, Shaw’s filtering algorithm
does better than the Bounds Consistency.

3.2 Results from Approximation

Although the optimisation version of the Bin Packing problem is NP-hard ,
this problem was well studied in the last decades in approximation theory. For
instance there exist algorithms in PTAS/DPTAS approximation classes solving
the Bin Packing optimisation problem [4]. We decided to focus our study on two
well-know algorithms giving a good approximation ratio for the BP problem: the
First Fit algorithm and the Best Fit algorithm.



The First Fit algorithm consists in assigning the first object of the list not
already placed into the first bin that can contain it.

The Best Fit algorithm consists in assigning the first object of the list not
already placed into the less empty bin that can still contain it.

4 A new propagator: BF-Prop

4.1 Presentation of the propagator

Our general methodology consists in selecting a dedicated algorithm solving the
problem. Then we create a propagator whose filtering algorithm filters impossible
values for the partial instantiation corresponding to the current node in the
search tree, which is the tree of decisions took by the solver during the resolution.
This filtering algorithm will generate nogood, which is a set of assignments that
is not consistent with any solution [2], for xi = j choices leading to a worse
solution than the one got only from the partial instantiation.

Example 1. We consider objects of size 1000, 500, 350, 200 and 100 and that the
bins are of size 1100. We also consider the Best Fit algorithm. For the partial
instantiation { x1 = 1, x2 = 2 }, our propagator’s filtering algorithm will remove
1 from the domains of x3 and x4, because the objects x3 and x4 are too heavy to
be put with the first object, represented by x1. Moreover, the choices x5 = i for
i ≥ 2 will each generate a nogood for the current partial instantiation because
they will lead to solutions with 3 bins where the current partial instantiation
leads to a solution with 2 bins when applying the Best Fit algorithm. This
signifies that for each partial instantiation with x1 = 1 and x2 = 2, x5 can not
take values that are greater or equal than 2. Thus x5 will be instantiated to the
value 1.

In fact, our propagator generates new constraints that are based on nogoods,
i.e. that cut down the exploration of the branch of the search tree if it corresponds
to a nogood. This can have impacts at several moments in the search tree.

Our approach currently has an obvious high computing cost because it applies
the polynomial approximation algorithm several time at each node of the tree.

Proposition 1. We note n the number of integer variables xi, d the size of the
largest domain and f(n) the time complexity of the approximation algorithm.
Our propagator’s filtering algorithm complexity is then in O(f(n)nd).

As the Best Fit Decreasing algorithm’s time complexity is O(nlog(n)), with n
the number of objects to pack, our derived propagator BF-Prop is inO(n2log(n)d).

In the rest of this paper, we call BF-Prop the propagator deduced from
the Best-Fit algorithm.



4.2 Generating Nogood for the Bin Packing problem

We note s the value of the solution returned by the approximation algorithm
considering only the partial instantiation.

Our intuition is that for each possible instantiation xi = j added to the
partial instantiation, if the solution s′ returned by the approximation algorithm
is worse than s, then we know that the sequence of instantiations made by the
approximation algorithm, that lead to a greater number of bins s′ than s, cannot
exist in any optimal solution:

Proposition 2. We note PI the Partial Instantiation and S the set of variables
that were in the sequence of instantiations made by the approximation algorithm
that lead to a greater number of bins s′ than s. The generated nogood will be the
negation of all the instantiations of PI and of S as well as the tried choice:

¬[(
∧

w∈PI

w = valPI(w)) ∧ xi = j ∧ (
∧

v∈S
v = valS(v))] (6)

Proof. As the partial instantiation and the choice xi = j lead to use more bins
than the current best known solution, we know that any optimal solution cannot
be built with these exact instantiations (the partial instantiation, the choice and
the algorithm assignment decisions). So a nogood being the negation of all these
instantiations can be generated and added to the set of constraints. ut

It is interesting to notice that the sequence S doesn’t need to contain all the
variables of the problem, but only the ones that were instantiated at the moment
when the approximation algorithm needs to use more bins than the bound s. For
example, we consider bins of size 1000 and objects of size 600, 600, 500, 500, 400
and 400. If the partial instantiation is x1 = 1 and x2 = 2, the Best-Fit algorithm
will say that it needs 3 bins. So if we try the instantiation x5 = 3, the algorithm
will use a 4th bin when trying to put the second object that weight 500. So we
can stop the algorithm and generate a nogood without having to pack the last
object because we already know that the solution will be worse than the one we
had. Indeed, the shorter the nogood clause, the better the performance of the
deduced constraint.

5 Experimentations and results

The instances we worked on where created following a Weibull distribution,
as described in [1]. We generated 100 instances of Bin Packing with a scale
parameter of 1000, of size 10, of shape parameter between 0, 5 et 18, 0 and
of size of bin between 1, 0 and 2, 0 times the biggest generated object. While
these instances are randomly generated, Castineiras et al. show that real-world
instances can be generated thanks to a Weibull distribution [1].



5.1 Experimentations

Our experimentations were run on Choco solver 4.0 [8] on a 2.4 GHz Intel i5-
4210U processor. We consider the solver to fail in finding and proving the optimal
solution if it takes more than 10 minutes.

Our protocol consists in several experimentations aiming to compare the
possible benefits of our new propagator, based on a dedicated algorithm and
which generates nogood, with the results got by the model based on Paul
Shaw’s constraint and by an Oracle. For that, we will use the set of instances
that we generated using a Weibull distribution.

Every model will be compared on its solving capabilities when using the same
variable/value selection heuristic. For our experimentations, we consider two
heuristics: minDom-minValue because it is very well-known, and dom-wdeg
[5] because it is the default heuristic used in Choco solver. For each instance,
each model and each heuristic, we will compare the number of nodes needed and
the time spent to find the first optimal solution (and to prove the optimality).

However what really interests us is the filtering capacity of our new propa-
gator. So we will also do the following experimentation: for each instance and
each model, we will record the number of filtered values in order to compare
the filtering capacities of each model. We will also use an Oracle, representing
the Generalised-Arc-Consistency for the optimisation Bin Packing problem, in
order to have a GAC-base to compare all the models. For each instance, we will
compare the values filtered by each propagator for a given state of the variables.
More especially, for a given state of the variables, the Oracle will remove all the
values from the variables’ domains that are in none of the optimal solutions.

5.2 Results

For the research of the optimal solution of a Bin Packing problem of size 10, we
obtained the following results. For non trivial instances (that is to say the ones
for which the optimal is different than the number of objects), BF-Prop solved
all the instances in 17.4 seconds, the integer model based on Shaw’s constraint
in 503.6 seconds and the binary model in 1640.5 seconds. To this end, BF-Prop
used 177417 nodes, the integer model 12147504 and the binary model 14047374
nodes. These results are indicated in the array in figure 1.

Moreover, BF-Prop also showed very interesting results concerning the fil-
tering process. For each of the 100 instances of size 10, we randomly fixed 10%,
20%, 30%, 40%, 50% and 60% of the variables to one value of their domain. After
applying the two propagators (BF-Prop and Shaw’s propagator), we compare
how many values they have filtered from the variables’ domain. The process was
repeated 30 times for each instance. The two graphics in figure 1 shows the total
number of filtered values over all the instances and the 30 times the process was
repeated. The first graphic shows the raw numbers of filtered values for each
propagator, while the second one shows the ratio of filtered values for BF-Prop
and for Shaw’s propagator compared to the Oracle.



(a) (b)

Total time of solving (seconds) Total used nodes Total encountered fails
BF-Prop 17.36 177417 177340
Shaw 503.6 12147504 12147425

Binary model 379.5 14047374 14047295
(c)

Fig. 1. Experimentations’ results

For instance, for 10% fixed variables, BF-Prop succeeds in filtering 87%
of the values that the Oracle has filtered, compared to the 45% got by Shaw’s
propagator.

First thing we remark is that the more variables are instantiated at the start
of the filtering process, the more efficient are the two propagators, closing the
gap with the Oracle. What is interesting to note is that even for a few percentage
of fixed variables BF-Prop filters almost as much as the Oracle. From 2 fixed
variables on the 10, BF-Prop filters over 90% of what the Oracle filters !

Finally, for every treated instance and for every percentage of instantiated
variables, Shaw’s propagator filters 67% of what the Oracle filters whereas BF-Prop
filters 95% of what the Oracle filters.

6 Conclusion and future work

This paper has introduced a new filtering algorithm, based on the Best-Fit ap-
proximation algorithm, for the optimisation Bin-Packing problem. We empiri-
cally showed that this propagator can be of great efficiency and even be better
than the known state-of-the-art global constraint.

Future work will consist in studying the potential extensibility of automati-
cally deriving filtering algorithms from dedicated ones to other NP-hard prob-
lems, still using nogoods at the base of the filtering process. We will also work
on finding a measure of filtering efficiency in order to have a better hierarchy
of filtering algorithms, currently formed of discontinuous class of consistencies,
using approximation measures.
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A Global Constraint for the Exact Cover
Problem: Application to Conceptual Clustering

Maxime Chabert1,2 and Christine Solnon1

1 Université de Lyon, INSA Lyon, LIRIS, F-69622, France
2 Infologic, France

Abstract. We introduce a global constraint dedicated to the exact cover
problem: given a set S of elements and a set P of subsets of S, exactCover
ensures that a set variable C is assigned to a subset of P which forms a
partition of S. We introduce a new propagation algorithm for exactCover
that uses Dancing Links to efficiently maintain the data structure that
links elements and subsets. We compare this algorithm with different
decompositions of exactCover, and show that it is an order of magnitude
faster. We also introduce an extension of exactCover for the case where
costs are associated with subsets in P , and minimal and maximal costs
of selected subsets are bounded by integer variables. We experimentally
evaluate the relevance of exactCover on conceptual clustering problems,
and show that it scales better than recent ILP and CP models.

1 Introduction

Given a set S of elements and a set P ⊆ P(S) of subsets of S, an exact cover is
a subset C ⊆ P which is a partition of S, i.e., for each element a ∈ S, there is
exactly one subset u ∈ C such that a ∈ u. Throughout this paper, elements of
P (i.e., subsets) are denoted u or v, and elements of S are denoted a or b. For
each u ∈ P , we denote u = {a ∈ S|a ∈ u} the elements of u, and for each a ∈ S,
we denote cover(a) = {u ∈ P |a ∈ u} the set of subsets that contain a.

The exact cover problem is NP-complete [13]. Examples of applications of
this problem are tiling problems (each square of a figure must be covered by
exactly one polyomino, where each polyomino is composed of several adjacent
squares) [15], and instruction selection problems (each instruction of a function
must be covered by exactly one processor instruction, where each processor in-
struction is composed of several instructions) [5,11]. Our interest for this problem
comes from a conceptual clustering application which is described in Section 6.

Overview of the paper. In Section 2, we define the exactCover global constraint,
and we describe three decompositions of exactCover. In Section 3, we introduce
a filtering algorithm for exactCover that ensures the same level of consistency
as decompositions, but at a lower cost thanks to Knuth’s Dancing Links [15]. In
Section 4, we study how to add constraints on the number of selected subsets. In
Section 5, we study how to add constraints on the minimal and maximal costs of
selected subsets, when costs are associated with each subset of P . In Section 6,
we evaluate the relevance of exactCover on a conceptual clustering application.



2 Definition and decompositions of ExactCover

Given a set S, a set P ⊆ P(S), and a set variable C, the global constraint
exactCoverS,P (C) is satisfied iff C is assigned to a subset of P which is an
exact cover of S. Enforcing Generalized Arc-Consistency (GAC) of exactCover
is NP-complete as the exact cover problem is NP-complete.

We describe below three decompositions of exactCover. In all cases, for each
element a ∈ S, an integer variable coveredBy [a] is used to decide which subset
of P covers a, and its domain is D(coveredBy [a]) = cover(a).

Boolean decomposition (BoolDec). This decomposition is used in [11] to solve an
instruction selection problem. It uses Boolean variables instead of a set variable
C to represent the selected subsets: for each subset u ∈ P , a Boolean variable
isSelected [u] indicates if u is selected and it is channeled to the coveredBy vari-
ables by the constraint: ∀a ∈ u, coveredBy [a] = u⇔ isSelected [u].

Set decomposition (SetDec). This decomposition is used in [1] to solve a concep-
tual clustering problem. For each element a ∈ S, it ensures that coveredBy [a]
belongs to C by posting the constraint coveredBy [a] ∈ C, and that a is covered
by exactly one subset in C by posting the constraint #(cover(a) ∩ C) = 1.

Global cardinality decomposition (GccDec). This decomposition is used in [5] to
solve an instruction selection problem. It exploits the fact that, for each subset
u ∈ P , the number of coveredBy variables assigned to u is either equal to 0 (if u is
not selected), or to #u (if u is selected). Hence, to model the exact cover problem,
an Integer variable nb[u] is associated with every subset u ∈ P : it represents
the number of times u is assigned to a coveredBy variable and its domain is
D(nb[u]) = {0,#u}. ExactCover is equivalent to gcc(coveredBy, P, nb).

Consistencies ensured by these decompositions. Enforcing Arc Consistency (AC)
on BoolDec or SetDec ensures the same filtering level: it ensures that, for each
pair of elements {a, b} ⊆ S such that D(coveredBy [a]) = {u}, if b ∈ u then
D(coveredBy [b]) = {u}; otherwise, ∀v ∈ D(coveredBy [b]), v ∩ u= ∅ (domains of
isSelected variables (for BoolDec) or of C (for SetDec) are filtered consequently).
For GccDec, as nb domains are not intervals, enforcing GAC is NP-complete,
and solvers usually enforce weaker consistencies [22,17].

Variable ordering heuristic. As pointed out by Knuth [15], the order used to
select subsets has a great impact on performance, and better results are usu-
ally obtained by first selecting a subset that covers an element that belongs to
the smallest number of possible subsets. When searching for exact covers with
BoolDec, SetDec, or GccDec, this amounts to branching on coveredBy variables
and using the minDom heuristic to select the next coveredBy variable to assign.

3 Propagation algorithm for exactCover

We introduce a propagation algorithm which enforces the same level of con-
sistency as AC on BoolDec or SetDec. More precisely, it ensures the following



property: ∀u ∈ C.lb,∀v ∈ C.ub, u 6= v ⇒ u ∩ v = ∅ (where C.lb and C.ub denote
the kernel and the envelope of the domain of C, respectively, i.e., the domain of
C contains every set X such that C.lb ⊆ X ⊆ C.ub).

To enforce this consistency, each time a subset u is added to C.lb, we remove
from C.ub every subset v such that u ∩ v 6= ∅. To do this efficiently, we use a
backtrackable data-structure introduced by Knuth for the exact cover problem,
i.e., Dancing Links [15]. Let us denote uncov = {a ∈ S|∀u ∈ C.lb, a 6∈ u} the
set of elements that are not covered by a subset in the kernel of C. The idea is
to maintain two collections of doubly linked circular lists: for each a ∈ uncov ,
the list La contains all the subsets that belong to cover(a) ∩ C.ub; and for each
u ∈ P , the list Lu contains all elements that belong to u. We also maintain
a doubly linked circular list Luncov which contains all elements of uncov. The
relevance of using doubly linked circular lists is that removing a cell x may
be undone (when backtracking) without knowing anything else but x. More
precisely, let prev [x] (resp. next [x]) be the cell before (resp. after) x. Removing
x is done by performing prev [next [x]] ← prev [x] and next [prev [x]] ← next [x]
(without modifying prev [x] or next [x]), while restoring x is done by performing
prev [next [x]]← x and next [prev [x]]← x (see [15] for details).

When a subset u is added to C.lb, we traverse Lu (using next links) and
perform the following operations for each element a in Lu:
– Remove a from Luncov

– Traverse La (using next links) and for each subset v in La:
• Remove v from C.ub
• Traverse Lv (using next links) and for each b in Lv: remove v from Lb

When backtracking, we perform the inverse operations: elements are restored
instead of being removed and lists are traversed in reverse order by using prev
links instead of next links. We only need to memorize the initial decision, i.e.,
the addition of u to C.lb.

In both cases, the complexity is in O(d2P · dS) where dP = maxu∈P #u and
dS = maxa∈S #cover(a). This is an upper bound: in practice, for each element
a ∈ S, the list La may contain fewer cells than #cover(a) as cells are removed
each time a subset node is added to C.lb.

Ordering heuristic. To implement the same search as BoolDec, SetDec, and Gc-
cDec, at each search node, we traverse the list Luncov to search for the smallest
list La (list sizes are incrementally maintained), we select a subset u in La, and
we branch on adding u to C.lb.

Experimental comparison. BoolDec, SetDec, GccDec, and our new global con-
straint (called EC) are all implemented in Choco v.4.0.3 [21]. All experiments
were conducted on Intel(R) Core(TM) i7-6700 and 65GB of RAM. We consider
the problem of enumerating all solutions of instances built from the instance
ERP1 described in [1]. ERP1 has #S = 50 elements and #P = 1579 subsets. As
it has a huge number of solutions, we consider instances obtained from ERP1
by selecting x% of its subsets in P , with x ∈ [10, 30]. For each value of x, we
have randomly generated 10 instances. We consider the same ordering heuristics
for all models (as described previously), and we break ties by fixing an order on



Fig. 1: Left: Evolution of the time (in seconds) spent by EC, BoolDec, SetDec,
and GccDec to enumerate all solutions when varying the percentage x of subsets
for ERP1 (average on 10 instances per value of x). Right: Evolution of the
number of choice points (#CP) and solutions (#Sol) when varying x.

subsets and elements. Fig. 1 shows us that all models explore the same number of
choice points. This was expected for SetDec, BoolDec, and EC. For GccDec, the
consistency ensured by Choco is not formally defined. In practice, it explores
exactly the same number of choice points as SetDec, BoolDec, and EC. The
three decompositions have very similar times while EC is an order of magnitude
faster. For example, when x = 30%, EC needs 88s, on average, to enumerate all
solutions whereas BoolDec, SetDec, and GccDec need 1861s, 1696s, and 1936s,
respectively.

4 Constraining the cardinality of C

In some cases, the number of selected subsets must be constrained. In this case,
we declare an integer variable K and constrain it to be equal to the cardinality
of C. To do this, a first possibility (called EC-C) is to post the constraint #C =
K. A second possibility (called EC-NV) is to use nvalues [19]: we declare, for
each element a ∈ S, an integer variable coveredBy [a] which is linked with C
by adding the constraint coveredBy [a] ∈ C, and we constrain K to be equal to
the cardinality of C by posting the constraint nvalues(coveredBy ,K). Finally,
a third possibility is to extend exactCover by adding K to its arguments: we
define the global constraint exactCoverKS,P (C,K) which is satisfied iff C is
an exact cover of S and the cardinality of C is equal to K. This constraint is
propagated like exactCover, but we also ensure that #C.lb ≤ K.lb ≤ K.ub ≤
min{#C.ub,#C.lb + #uncov} (where K.lb and K.ub denote the smallest and
largest value in the domain of K). Furthermore, when there are at most two
subsets that can still be added to C (i.e., when K.ub −#C.lb ≤ 2), we remove
from C.ub every subset u such that u 6= uncov and ∀v ∈ C.ub\C.lb, {u, v} is not
a partition of uncov.

In Fig. 2, we compare EC-C, EC-NV, and exactCoverK (EC-K) for enumer-
ating all solutions of an instance obtained from ERP1 by selecting 25% of the
subsets in P , when constraining the cardinality of C to be equal to k (with



Fig. 2: Left: Evolution of the time (in seconds) spent by EC-K, EC-C, EC-NV
with weak propagation (EC-NV1) and strong propagation (EC-NV2) to enumer-
ate all solutions when varying k from 2 to 49, and constraining the cardinality
of C to be equal to k, for an instance obtained from ERP1 by selecting 25% of
P . Right: Evolution of the number of choice points and solutions.

k ∈ [2,#S − 1]). For EC-NV, we consider two filtering levels: nvalues is imple-
mented in Choco by combining atMostNvalues and atLeastNvalues, and each of
these constraints has two filtering levels (weak and strong). We denote EC-NV1
(resp. EC-NV2) when weak (resp. strong) filtering is used for both constraints.
As expected, EC-NV2 explores fewer choice points than other variants, except
when k ≥ 39, where EC-K explores slightly fewer choice points. However, this
strong propagation is expensive and EC-K is always faster than other variants:
it is similar to EC-C when k < 30 and it is clearly more efficient for larger values.
Indeed, when k becomes large, EC-K detects efficiently that the current assign-
ment is not consistent as soon as the number of uncovered elements becomes
lower than the number of subsets that still must be added to C.lb.

5 Constraining cost bounds

In some applications, costs are associated with subsets of P , and the costs of the
selected subsets must range between some given bounds. Let n be the number
of costs, c : [1, n] × P → R be a function such that c(i, u) is the ith cost asso-
ciated with subset u, and Min and Max be two arrays of n integer variables.
The constraint exactCoverCostS,P,c(C,Min,Max ) is satisfied iff C is an exact
cover of S such that for each i ∈ [1, n], Min[i] = minu∈C c(i, u) and Max [i] =
maxu∈C c(i, u). This constraint is propagated like exactCover, but we also en-
sure that, for each cost i ∈ [1, n], ∀u ∈ C.lb,Min[i].ub ≤ c(i, u) ≤ Max [i].lb and
∀u ∈ C.ub,Min[i].lb ≤ c(i, u) ≤ Max [i].ub. When the cardinality of C must also
be constrained, we define the constraint exactCoverCostKS,P,c(C,Min,Max ,K)
that also performs filterings on K as defined in Section 4. In the next section,
we use exactCoverCostK to solve conceptual clustering problems.



6 Application to Conceptual Clustering Problems

Clustering aims at grouping objects described by attributes into homogeneous
clusters. The key idea of conceptual clustering is to provide a description of
clusters. Usually, each cluster corresponds to a formal concept, i.e., sets of objects
that share a same subset of attributes. More formally, let O be a set of objects,
and for each object o ∈ O, let attr(o) be the set of attributes that describes o. The
intent of a subset of objects Oi ⊆ O is the set of attributes common to all objects
in Oi, i.e., intent(Oi) = ∩o∈Oi

attr(o). Oi is a formal concept if intent(Oi) 6= ∅
and if Oi = {o ∈ O : intent(Oi) ⊆ attr(o)}. A conceptual clustering is a partition
of O in k subsets O1, . . . , Ok such that, for each i ∈ [1, k], Oi is a formal concept.

Computation of formal concepts. Formal concepts correspond to closed itemsets
[20] and the set of all closed itemsets may be computed by using algorithms
dedicated to the enumeration of frequent closed itemsets. In particular, LCM [26]
extracts all formal concepts in linear time with respect to the number of formal
concepts. Constraint Programming (CP) has been widely used to model and
solve itemset search problems [23,14,8,7,16,24,25]. Indeed, CP allows one to easily
model various constraints on the searched itemsets, and these constraints are
used to reduce the search space.

CP for Conceptual Clustering. Conceptual clustering is a special case of k-pattern
set mining, as introduced in [9]: conceptual clustering is defined by combining a
cover and a non-overlapping constraint, and a CP model is proposed to solve this
problem. [2] describes a CP model for clustering problems where a dissimilarity
measure between objects is provided, and this CP model has been extended to
conceptual clustering in [3]. Experimental results reported in [3] show that this
model outperforms the binary model of [7]. [1] introduces another CP model,
which improves the model of [3] and has been shown to scale better.

Conceptual Clustering as an Exact Cover Problem. There exist very efficient
tools (e.g., LCM [26]) for computing the set F of all formal concepts. Given this
set F , a conceptual clustering problem may be seen as an exact cover problem:
the goal is to find a subset of F that covers every object exactly once. This exact
cover problem may be solved by using Integer Linear Programming (ILP). In
particular, [18] proposes an ILP model to solve this exact cover problem. This
exact cover problem may also be solved by using CP, and [1] introduces a CP
model which corresponds to the set decomposition described in Section 2.

Test instances. We describe in Table 1 six classical machine learning instances,
coming from the UCI database, and six ERP instances coming from [1] (we do
not consider ERP1 which is trivial).

Experimental results when optimizing a single criterion. We consider the problem
of finding a conceptual clustering that optimizes a cost associated with formal
concepts. We consider four different costs: the size (resp. frequency, diameter,
and split) of a formal concept Oi is #intent(Oi) (resp. #Oi, maxo,o′∈Oi

d(o, o′),
and mino∈Oi,o′∈O\Oi

d(o, o′), where d(o, o′) = 1− #(attr(o)∩attr(o′))
#(attr(o)∪attr(o′)) is the Jaccard



Table 1: Test instances: for each instance, #S gives the number of objects, #A
gives the number of attributes, #P gives the number of formal concepts, and T
gives the time (in seconds) spent by LCM to extract all formal concepts.
Name #S #A #P T Name #S #A #P T
ERP 2 47 47 8 1337 0.03 UCI 1 (zoo) 101 36 4 567 0.01
ERP 3 75 36 10 835 0.03 UCI 2 (soybean) 630 50 31 759 0.10
ERP 4 84 42 14 305 0.05 UCI 3 (primary-tumor) 336 31 87 230 0.28
ERP 5 94 53 63 633 0.28 UCI 4 (lymph) 148 68 154 220 0.52
ERP 6 95 61 71 918 0.45 UCI 5 (vote) 435 48 227 031 0.68
ERP 7 160 66 728 537 5.31 UCI 6 (hepatitis) 137 68 3 788 341 13.9

Table 2: Time (in seconds) spent by ILP, HCP, FCP and EC to find a concep-
tual clustering that maximizes the minimal size (resp., maximizes the minimal
frequency, minimizes the maximal diameter, and maximizes the minimal split).
We report ’-’ when time exceeds 1000s.

Max(SizeMin) Max(FreqMin) Min(DiamMax) Max(SplitMin)
ILP HCP FCP EC ILP HCP FCP EC ILP HCP FCP EC ILP HCP FCP EC

ERP 2 1.0 0.1 0.1 0.0 1.7 0.4 0.3 0.1 1.0 0.1 0.1 0.0 0.6 0.1 0.5 0.0
ERP 3 4.4 0.1 0.1 0.0 2.7 0.5 0.6 0.1 1.3 0.1 2.6 0.0 0.8 0.1 2.3 0.0
ERP 4 4.1 0.7 1.4 0.1 21.1 0.6 0.6 0.1 8.7 0.7 1.6 0.1 1.5 0.1 2.6 0.1
ERP 5 26.7 0.8 0.2 0.4 27.3 6.4 1.0 2.5 15.4 1.1 0.6 0.4 6.6 1.2 3.2 0.4
ERP 6 21.8 4.5 2.7 0.7 357.7 6.6 1.5 2.2 124.0 4.9 1.4 0.6 14.1 1.7 4.6 0.7
ERP 7 - 132.3 6.5 8.0 - - 9.6 861.9 - 144.7 3.9 19.7 - 12.4 25.2 6.8
UCI 1 3.1 0.2 0.5 0.1 2.0 0.9 1.8 0.1 2.9 0.1 0.6 0.0 0.9 0.1 12.0 0.0
UCI 2 15.5 4.8 - 0.2 - 31.7 131.7 1.0 15.0 4.4 - 0.2 15.7 3.3 620.2 0.2
UCI 3 - 4.6 272.5 0.4 - 62.1 24.7 0.8 - 4.3 268.1 0.4 - 313.0 60.4 0.5
UCI 4 - 29.4 40.9 1.1 - 19.0 5.1 1.8 - 3.5 4.0 1.0 52.7 3.2 4.9 0.6
UCI 5 84.7 19.7 186.5 0.9 - 83.6 - 1.1 83.2 18.7 190.0 0.9 - - 203.3 1.4
UCI 6 - 104.6 1.1 16.4 - - 2.5 139.4 - 115.2 1.8 27.5 - 195.3 9.0 17.6

distance). The goal is to maximize the minimal cost of selected formal concepts
for size, frequency and split, and to minimize the maximal cost for diameter.
Table 2 reports results when optimizing a single criterion at a time, and when the
number of selected formal concepts is constrained to belong to [2,#O− 1]. This
problem is solved with exactCoverCostK (where the number of costs n = 1) while
refining the ordering heuristic described in Section 3 as follows: when choosing
the subset u ∈ La to be added to C.lb, we choose the subset with the best cost.
This model, called EC, is compared with the ILP model of [18] (denoted ILP),
the full CP model of [1] (denoted FCP), and the hybrid CP model of [1] (denoted
HCP). For EC, ILP, and HCP, we first compute the set of all formal concepts
with LCM before solving an exact cover problem, and times reported in Table 2
include the time spent by LCM. EC is always much faster than ILP and HCP.
EC is often faster than FCP, but for some instances FCP is faster than EC.

Experimental results when computing Pareto Fronts. Finally, we consider the
problem of computing the Pareto front of non-dominated conceptual clusterings



Frequency/Size Split/Diameter Frequency/Size Split/Diameter
#s ILP HCP EC #s ILP HCP EC #s ILP HCP EC #s ILP HCP EC

ERP 2 9 3.8 30.7 1.4 5 1.4 34.9 0.9 UCI1 13 8.0 87.3 3.5 3 2.5 14.5 0.1
ERP 3 10 5.9 295.9 5.1 2 1.4 79.7 1.5 UCI2 - - - - 3 242.2 - 0.3
ERP 4 13 39.0 949.4 18.7 2 19.9 588.4 5.7 UCI3 - - - - 1 - - 0.3
ERP 5 13 88.3 - 142.4 3 27.2 - 141.0 UCI4 - - - - 5 - - 405.5
ERP 6 15 445.0 - 837.4 3 268.2 - 147.5 UCI5 - - - - 2 - - 0.6
Table 3: Time (in seconds) spent by ILP, HCP, and EC to compute the set of
non-dominated solutions for Frequency/Size and Split/Diameter. #s gives the
number of non-dominated solutions. We report ’-’ when time exceeds 3600.

for two pairs of conflicting criteria (i.e., Frequency/Size and Split/Diameter)
when the number of selected formal concepts is constrained to belong to [2,#O−
1]. This problem is solved with exactCoverCostK (where the number of costs
n = 2), using the same dynamic approach as [6,10,25,1] to compute the Pareto
front: we search for all solutions and, each time a solution sol is found, we
dynamically post a constraint that prevents the search from finding solutions
dominated by sol. Also, we refine the ordering heuristic described in Section 3
as follows: when choosing the subset u ∈ La to be added to C.lb, we choose
the non-dominated subset with the best cost on one of the two criteria. This
model, called EC, is compared with the hybrid CP model of [1] (denoted HCP),
using the same dynamic approach to compute the Pareto front. We also compare
EC with the ILP model of [18], using the approach proposed in [2] to compute
the Pareto front: we iteratively solve single criterion optimization problems while
alternating between the two criteria. We do not compare with the Full CP model
of [1] as it is not able to solve this problem within a reasonable amount of time.

Table 3 shows us that EC is much faster than HCP. EC is faster than ILP
on UCI instances, and it is competitive on ERP instances. For all approaches,
the Pareto front is smaller and also easier to compute when considering the
Split/Diameter criterion, instead of the Frequency/Size criterion. This may come
from the fact that Frequency and Size criterion are very conflicting criteria (for-
mal concepts with large frequencies usually have small sizes, and vice versa).

7 Conclusion

We have experimentally shown that using Dancing Links to propagate an ex-
act cover constraint significantly speeds up the filtering process, compared to
classical decompositions. This allows CP to efficiently solve conceptual cluster-
ing problems. As further works, we plan to compare exactCover with the SAT
models introduced in [12]. We also plan to extend exactCover to a soft version,
such that a limited number of elements may be either not covered, or covered
by more than one subset: this could be used to solve soft clustering problems
and we plan to compare CP with the ILP approach of [18]. Finally, we plan to
investigate the relevance of more advanced filterings that integrate, for example,
the simplifications proposed in [4] for the hitting set problem.
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Testing Global Constraints
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Abstract. Every Constraint Programming (CP) solver exposes a library
of constraints for solving combinatorial problems. In order to be useful,
CP solvers need to be bug-free. Therefore the testing of the solver is
crucial to make developers and users confident. We present a Java library
allowing any JVM based solver to test that the implementations of the
individual constraints are correct. The library can be used in a test suite
executed in a continuous integration tool or it can also be used to discover
minimalist instances violating some properties (arc-consistency, etc) in
order to help the developer to identify the origin of the problem using
standard debuggers.

Keywords: Constraint Programming · Testing · Filtering

1 Introduction

The filtering algorithms inside constraint programming solvers ([1,2,3,4] etc.) are
mainly tested using test suites implemented manually. Creating such unit tests
is a significant workload for the developers and is also error prone.

The most elementary yet important test to achieve for a constraint is that
no feasible solution is removed. One can always implement a checker verifying
the feasibility of the constraint when all the variables are bound. By comparing
the number of solutions generated with both the checker and the tested filtering
algorithm, one can be confident that no solution is removed. This procedure can
be repeated for many (small) instances (possibly randomly generated). Alter-
natively, one can compare with a decomposition of the constraint into (more)
elementary ones. This latter approach can improve the coverage of the test suite.

Those unit tests verifying the non removal of feasible solutions do not verify
other properties of constraints generally more difficult to test. For instance, the
domain-consistency property is rarely tested outside some hard-coded small test
examples.

We introduce CPChecker as a tool to ease the solver developer’s life by
automating the testing of properties of filtering algorithms. For instance, algo-
rithm A should filter more than algorithm B or Algorithm A should achieve arc
or bound-consistency, etc. The tool does not ensure that the tested filtering does
not contain any bug - as it is impossible to test all possible input domains - but it
can reveal the presence of one, if a test fails. The large variety of input domains
pseudo-randomly generated should make the user confident that the tool would
allow to detect most of the bugs.



2 Testing and debugging filtering of global constraints

Many constraint implementations are stateful and maintain some reversible
data structures. Indeed, global constraints’ filtering algorithms often maintain
an internal state in order to be more efficient than their decomposition. This
reversible state is also a frequent source of bugs. CPChecker includes the trail-
based operations when testing constraints such that any bug due to the state
management of the constraint also has a high chance to be detected. CPChecker
is generic and can be interfaced with any JVM trailed based solvers. CPChecker
is able to generate detailed explanations by generating minimal domain exam-
ples on which the user’s filtering has failed, if any.

Related work In [5,6,7], the authors introduce tools to debug models. Some
researches have also been done to help programmers while debugging codes for
constraint programming [8]. To the best of our knowledge, these tools, unlike
CPChecker, do not focus on the filtering properties of individual constraints.

In the next sections, we first detail how to test static filtering algorithms
before explaining the testing of stateful filtering algorithms for trailed based
solvers. Finally we introduce how CPChecker can be integrated into a test suite.

2 Testing Static Filtering Algorithms

CPChecker is able to test any static filtering algorithm acting over integer do-
mains. Therefore, the user needs to implement a function taking some domains
(array of set of ints) as input and returning the filtered domains1:

1 abs t r a c t c l a s s F i l t e r {
2 de f f i l t e r ( v a r i a b l e s : Array [ Set [ Int ] ] ) : Array [ Set [ Int ] ]
3 }

CPChecker also needs a trusted filtering algorithm serving as reference with
the same signature. The least effort for a user is to implement a checker for
the constraint under the form of a predicate that specifies the semantic of the
constraint. For instance a checker for the constraint

∑
i xi = 15 can be defined

as

1 de f sumChecker ( x : Array [ Int ] ) : Boolean = x . sum == 15

One can create with CPChecker an Arc/Bound-Z/Bound-D/Range Consis-
tent filtering algorithm by providing in argument to the corresponding construc-
tor the implementation of the checker. For instance

1 c l a s s A r c F i l t e r i n g ( checker : Array [ Int ] => Boolean ) extends
F i l t e r

2 va l t rustedArcSumFi l te r ing = new A r c F i l t e r i n g ( sumChecker )

1 Most of the code fragments presented are in Scala for the sake of conciseness but
the library is compatible with any JVM-based language.
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This class implements the filter function as a trusted filtering algorithm
reaching the arc consistency by 1) computing the Cartesian product of the do-
mains, 2) filtering with the checker the non solutions and 3) creating the filtered
domains as the the union of the values. Similar filtering algorithms’ (Bound-Z,
Bound-D and Range) have been implemented from a checker.

Finally the check and stronger functions permit to respectively check that
two compared filtering algorithms are the same or that the tested filtering is
stronger than the trusted one.

1 de f check / s t r onge r ( t r u s t e d F i l t e r i n g : F i l t e r , t e s t e d F i l t e r i n g :
F i l t e r ) : Boolean

The testing involves the following steps:
1. Random Domains generation 2.
2. Execution of the tested and trusted filtering algorithms (from CPChecker’s

filterings or another trusted one) to these random domains.
3. Comparison of the domains returned by the two filtering algorithms.

This process is repeated by default 100 times although all the parameters can
be overridden for the creation of random domains, number of tests, etc.

2.1 Generation of Random Test Instances

In order to test a filtering implementation, CPChecker relies on a property based
testing library called ScalaCheck [9]3. This library includes support for the cre-
ation of random generators and for launching multiple test cases given those.
CPChecker also relies on the ability of ScalaCheck of reducing the instance to
discover a smaller test instance over which the error occurs.

2.2 Example

Here is an example for testing with CPChecker the arc-consistent AllDifferent
constraint’s in OscaR [2] solver :

1 ob j e c t ACAllDif fTest extends App {
2 de f a l l D i f f C h e c k e r ( x : Array [ Int ] ) : Boolean = x . toSet . s i z e ==

x . l ength
3 va l t rustedACAl lDi f f : F i l t e r = new A r c F i l t e r i n g (

a l l D i f f C h e c k e r )
4 va l oscarACAl lDi f f : F i l t e r = new F i l t e r {
5 o v e r r i d e de f f i l t e r ( v a r i a b l e s : Array [ Set [ Int ] ] ) : Array [ Set

[ Int ] ] = {
6 va l cp : CPSolver = CPSolver ( )
7 va l vars = v a r i a b l e s . map( x => CPIntVar ( x ) ( cp ) )
8 va l c o n s t r a i n t = new AllDiffAC ( vars )
9 t ry {

2 A seed can be set to reproduce the same tests.
3 Similar libraries exist for most programming languages, all inspired by QuickCheck

for Haskell.
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10 cp . post ( c o n s t r a i n t )
11 } catch {
12 case : I n c o n s i s t e n c y => throw new NoSolut ionException
13 }
14 vars . map( x => x . toArray . toSet )
15 }
16 }
17 check ( trustedACAllDi f f , oscarACAl lDi f f )
18 }

The trusted filtering algorithm is created thanks to the ArcFiltering class at
line 3. The checker for AllDifferent simply verifies that the union of the values
in the array has a cardinality equal to the size of the array, as defined at line
2. The tested filtering implements the filter function using OscaR’s filtering.
It first transforms the variables into OscaR’s variables (line 7) then creates the
constraint over them (line 8). It is then posted to the solver which filters the
domains until fix-point before returning them.

3 Testing stateful constraints

Incremental Filtering Algorithms usually maintain some form of state in the
constraints. It can for instance be reversible data-structures for trailed-based
solvers. CPChecker allows to test a stateful filtering algorithm by testing it dur-
ing a search while checking the state restoration. In terms of implementation, the
incremental check and stronger functions compare FilterWithState objects
that must implement two functions. The setup function reaches the fix-point
while setting up the solver used for the search. The branchAndFilter function
applies a branching operation on the current state of the solver and reaches a
new fix-point for the constraint. The branching operations represent standard
branching constraints such as =, 6=, <,> and the push/pop operations on the
trail allowing to implement the backtracking mechanism (see [10] for further
details on this mechanism).

1 abs t r a c t c l a s s F i l t e rWithState {
2 de f setup ( v a r i a b l e s : Array [ Set [ Int ] ] ) : Array [ Set [ Int ] ]
3

4 de f branchAndFilter ( branching : BranchOp ) : Array [ Set [ Int ] ]
5 }

The process of testing an incremental/stateful filtering algorithm is divided
into four consecutive steps :
1. Domains generation
2. Application of the setup function of the tested and trusted filtering algo-

rithms.
3. Comparing the filtered domains returned at step 2.
4. Execution of a number of fixed number dives as explained next based on the

application of branchAndFilter function.
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3.1 Dives

A dive is performed by successively interleaving a push of the state and a domain
restriction operation. When a leaf is reached (no or one solution remaining) the
dive is finished and a random number of states are popped to start a new dive
as detailed in the algorithm 1.

Algorithm 1: Algorithm performing dives

Dives (root, trail, nbDives)
dives ← 0
currentDomains ← root
while dives < nbDives do

while !currentDomains.isLeaf do
trail.push(currentDomains)
restriction ← new RandomRestrictDomain(currentDomains)
currentDomains ← branchAndFilter(currentDomains, restriction)

dives ← dives + 1
for i ← 1 to Random(1,trail.size-1) do

trail.pop()
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3.2 Illustration over an Example

The next example illustrates CPChecker to test the OscaR[2]’s filtering for the
constraint

∑
i xi = 15. It should reach Bound-Z consistency.

1 ob j e c t SumBCIncrTest extends App {
2

3 de f sumChecker ( x : Array [ Int ] ) : Boolean = x . sum == 15
4 va l t ru s t ed = new I n c r e m e n t a l F i l t e r i n g (new BoundZFi lter ing (

sumChecker ) )
5 va l t e s t e d = new Fi l t e rWithState {
6 va l cp : CPSolver = CPSolver ( )
7 var currentVars : Array [ CPIntVar ] =
8

9 o v e r r i d e de f branchAndFilter ( branching : BranchOp ) : Array [
Set [ Int ] ] ={

10 branching match {
11 case : Push => cp . pushState ( )
12 case : Pop => cp . pop ( )
13 case r : RestrictDomain => t ry {
14 r . op match {
15 case ”=” => cp . post ( currentVars ( r . index ) === r .

constant )
16 . . . }
17 } catch {
18 case : Exception => throw new NoSolut ionException
19 }
20 }
21 currentVars . map( x => x . toArray . toSet )
22 }
23

24 o v e r r i d e de f setup ( v a r i a b l e s : Array [ Set [ Int ] ] ) : Array [ Set [
Int ] ] = {

25 currentVars = v a r i a b l e s .map( x => CPIntVar ( x ) )
26 t ry {
27 s o l v e r . post (sum( currentVars ) === 15)
28 } catch {
29 case : Exception => throw new NoSolut ionException
30 }
31 currentVars . map( x => x . toArray . toSet )
32 }
33 }
34 check ( trusted , t e s t e d )
35 }

In this example, two FilterWithState are compared with the check function.
In CPChecker, the IncrementalFiltering class implements the

FilterWithState abstract class for any Filter object. Therefore, the
IncrementalFiltering created with a BoundZFiltering object is used as the
trusted filtering (line 4) which it-self relies on the very simple sumChecker func-
tion provided by the user and assumed to be bug-free.
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4 Custom Assertions

To ease the integration into a JUnit like test suite, CPChecker has custom as-
sertions extending the AssertJ [11] library. The classes FilterAssert and
FilterWithStateAssert follow the conventions of the library with the filterAs
and weakerThan functions to respectively test a filtering algorithm, as in the
check and stronger functions. An example of assertion is:

1 assertThat ( t e s t e d ) . f i l t e r A s ( t rus t ed1 ) . weakerThan ( t rus t ed2 )

5 Code Source

CPChecker’s code source is publicly available in the Github repository4. This
repository also contains several examples of usage of CPChecker with both Scala
solver and Java solvers, namely OscaR[2], Choco[1] and Jacop[3]. From those
examples, CPChecker detected that the arc consistent filtering of the Global
Cardinality constraint of OscaR was not arc consistent for all the variables (the
cardinality variables). This shows the genericity of CPChecker and that it can
be useful to test and debug filtering algorithms with only a small workload for
the user. Further details on the architecture and implementation of CPChecker
can be found in the Master Thesis document available at the github repository4.

6 Conclusion and Future Work

This article presented CPChecker, a tool to test filtering algorithms implemented
in any JVM-based programming language based on the JVM. Filtering algo-
rithms are tested over domains randomly generated which is efficient to find un-
expected bugs. Principally written in Scala, CPChecker can be used to test sim-
ple and stateful filtering algorithms. It also contains its own assertions system to
be directly integrated into test suites. As future work, we would like to integrate
into CPChecker properties of scheduling filtering algorithms [12] such as edge-
finder, not-first not-last, time-table consistency, energy filtering, etc. for testing
the most recent implementation of scheduling algorithms [13,14,15,16,17,18].

4 https://github.com/vrombouts/Generic-checker-for-CP-Solver-s-constraints
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Abstract. Developing reliable software for Single-Arm Robots, SAR, is a chal-

lenging task. A typical system involves complex motion control systems and anti-

collision systems, which are difficult to specify and to implement. Moreover, de-

veloping convincing test scenarios, which place the system into extreme cases, is 

extremely complicated due to the variety and complexity of possible robots’ con-

figurations. To overcome these challenges, this paper introduces Robtest, a new 

method to test SAR. This method presents how such systems can be tested in a 

more systematic and automated way by proposing a constraint based method that 

is able to automatically generate test scenarios. The automation of this process 

bring some diverse problems. Building on top of existing continuous integration 

processes and an existing constraint-based frameworks used at ABB Robotics, 

the main challenge is to design constraint models for SAR that can be used to 

automatically generate test scenarios for testing ABB’s SAR. The method is im-

plemented using continuous constraint solver, which can resolve systems with 

non-linear constraints. This property is interesting in this domain since robot can 

perform other motions than a linear trajectory. The solver is used to define the 

space configuration and to obtain all the trajectories of the system. Based on these 

trajectories and considering some parameters, (e.g.  Number of point, the cost of 

the test), some test scenarios are generated. 

Keywords: constraint based trajectories, single-arm robot, test case generation 

and continuous solver 

1 Introduction 

Software testing is an important activity used during software development and after 

the release for quality assurance. A test case used during testing includes input param-

eters for stimulating the system under test and the expected behaviour in terms of out-

puts. Engineers design test case scripts and execute them to validate the system under 

test. The execution of the test produces a test result which is compared to the expected 

result as stated in the test cases. The result of executing a test suite is either a pass or a 

fail verdict. 

In the software industry today, despite all labor-intensive techniques to reduce the 

number of software errors in SAR, errors may be detected late in the design process, 

often very close to release date. In addition, detecting complex errors such as those due 
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to the interaction between multi-arm movements requires to extend the testing phase 

up to a level where its costs prevail on its benefice. 

Traditionally, human engineers write test script and an automatic process able to run 

test cases supports their execution. The creation of a test case is highly dependent on 

the robot configuration under test. The engineer writes a program in which some in-

structions allow the robot to move into its space configuration. To test different parts 

of the robot, the tester should write different test cases which is a time-consuming and 

error-prone process.  

To overcome the writing part of the test case, we propose Robtest, a method to gen-

erate test cases automatically, using constraint solving over continuous domains. The 

generation is realized by a toolbox, which contains several components. The toolbox 

takes three parameters as input and one as output, the test case. 

This paper aims at presenting an innovative methodology leveraging a constraints 

solver over continuous domain for automatically generating robot test scenarios. The 

approach represents a novelty since, the method uses constraints programming to the 

generation problem of robot trajectories tests. The method improves the test toolchain 

for robot testing and includes more diversity between test cases executed by a robot 

under test. The system is deployed to automatically generate test scenarios and test them 

on a single arm robot system. 

The remainder of this paper is organized in four sections. The next part deals with 

the background of the approach, presenting the robot space configuration and the re-

quired notions for a 6-axis robot. The following section presents the contribution of the 

new method by presenting the modelling and the usage of constraints in our method. 

Then, the preliminary experimental setup is presented as well as the first evaluation of 

our method. This paper is concluded by a discussion on the results and future work. 

2 Background 

Testing is an important part of software development and lifetime of the product. As 

exhaustive testing is costly, due to the time of writing a test by a tester, there is a need 

for automatic generation methods. Current best validation practices used to reduce the 

number of software errors are to apply techniques such as code review, manual unit/in-

tegration and system testing. However, these techniques are labor-intensive, and despite 

applying such techniques, software errors may still be detected late in the design pro-

cess, often very close to release date. This is problematic because, late error detection 

is much more costly than uncovering errors early in the design process. In addition, 

detecting complex errors such as those due to the interaction between arm movements 

requires to extend the testing phase up to a level where its costs prevail on its benefice. 

2.1 Robot Space 

The goal of the introduced method is to generate test trajectory scenarios for single arm 

robots. The trajectory, which is a motion performed by the robot under certain speed, 

orientation and others constraints parameters, should stay inside the space configuration 

of the robot itself. The robot configuration can be defined by the space in which oper-

ations are allowed. 
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A robot is a system with complex axis motion system. 

It can have several Degrees Of Freedom (DOF) regarding 

the number of axes that the robot contains. A robot with 

six different axis is called a 6DOF robot (see Fig. 1), while 

a 7DOF robot is a robot with seven axis. Concerning the 

space configuration of the robot, the resulting notion of 

DOF brings different dimensions spaces. Indeed, a 6DOF 

robot can move in a six dimensions space configuration. 

The three first dimensions are the Cartesians coordinates 

while the three last dimensions are responsible of the ori-

entation inside the Cartesian space. For the sake of simplicity, the drawing inside the 

paper will be in 2D, but the proposed method tackles three dimensions space configu-

ration. 

In every robot configuration, different zones split the area into two distinct spaces. 

The first zone is the forbidden zone (FZ), which is 

a zone in which the robot cannot move due to di-

verse reasons. The first is a mechanical constraints 

of the robot itself. The second is due to some ob-

jects, human, etc. placed around the robot and where 

the robot’s arm cannot move without provoking a 

dangerous and harmful collision. The remaining 

space around the robot forms the second zone 

named working zone (WZ). In this one, the robot 

can perform its tasks and freely move. A valid SAR 

test scenario is formed by points which defined a 

trajectory which go through WZ and never cross FZ. Generating such a test scenario is 

hard because of these constraints. To facilitate the handling, basic geometric shapes can 

be used (square, circle, etc.), Fig. 2. 

2.2 Possible robot motions 

Given an initial goal, a robot can move in many different ways. The three most com-

mon motions are presented here. The first one is the straight-line motion (SLM), called 

“moveL”, in which the robot move from the origin point to the destination point line-

arly. The second motion is the one where the robot starts from an origin point and 

reaches the destination describing a circular motion (CM), going through a third point. 

This motion is named “moveC”. The last motion is the “moveJ”, where the robot move 

quickly from an origin point to a destination point. The characteristic of this motion is 

that it does not have to be in a straight line. This motion is a non-linear joint motion 

(JM), this means that all axis of the robot move in the same time to reach the destination 

point. 

Since some motions are not linear (cf. CM and JM) and the robot’s motions are con-

tinuous, the usage of a continuous constraint solver is justified as it can handle all these 

cases since the solver is working with nonlinear constraints. 

Fig. 1. DOF for a robot 

Fig. 2. Robot space configuration 
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2.3 Trajectory test case 

To define a trajectory test case, at least two points must be defined, the starting point 

and the ending point. It is not possible to pass several time by the starting and ending 

points unlike the others. This is a constraint and a condition to satisfy, for a path, to be 

an acceptable trajectory. All these points are placed in the working zone. A trajectory 

is defined by nodes and edges which are added together:  

𝑇𝑟𝑎𝑗 =  𝑁𝑠𝑡𝑎𝑟𝑡 + ∑ 𝑁, 𝐸 + 𝑁𝑒𝑛𝑑 

Where N are nodes and E are edges, 𝑁𝑠𝑡𝑎𝑟𝑡 the starting point and 𝑁𝑒𝑛𝑑 the ending point. 

The trajectory formed by all the nodes and edges should respect the constraint of the 

space configuration, avoiding FZ. 

3 Contribution 

The goal of the proposed approach is to automatically generate trajectories having min-

imal costs. The notion of cost is explained in the following part. However, with our 

method, reaching a path with minimal cost is not the only purpose, we propose an "any 

cost" approach which generates all paths having a cost less than a given cost. 

The notion of cost is one of the important part of the trajectory. Indeed, the cost is a 

function including different parameters, like the distance between nodes, the speed, the 

orientation of the tools mounted on the wrist of the robot, etc. The cost of an edge is 

defined by the following function: 
𝐶𝑒𝑑𝑔 = 𝑓(𝑑𝑒𝑑𝑔, 𝑠, 𝑜, . . ) 

Where 𝑑𝑒𝑑𝑔  is the distance between two nodes, s the speed on the edge and o the 

orientation. 

 The cost is calculated for each edges that satisfied the space configuration 

constraints. To obtain the cost of a trajectory, a sum of the individual cost set on each 

edge of the trajectory is applied: 

𝐶𝑡𝑟 =  ∑ 𝐶𝑒𝑑𝑔 

Another parameter of the trajectory is the number of time that a node can be visited. 

The simplest is to visit the nodes of the trajectory once. Nevertheless, the method allows 

to visit nodes more than once, therefore, allowing loops. This parameter is an input of 

the method, defined by the user. 

To generate test trajectories, the user set three input parameters that are the maximal 

cost of the trajectory,𝐶𝑚𝑎𝑥, the number of loop allowed on each point, 𝑁𝑙𝑜𝑜𝑝, and the 

number of points in the initial cloud, 𝑁𝑝𝑜𝑖𝑛𝑡𝑠. This parameter does not include the start-

ing point and ending point. From these parameters, the output of the method is a test 

case in which some motion instructions are defined. 

To generate the trajectories test case, the method models the single-arm robot space 

configuration and applies some constraints technics in order to obtain a solution, a test 

case. 
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The modelling part is performed in a three-dimension space. To set up the problem, 

we consider N points placed in the working zone. Fig. 3 shows an example with five 

points and the cost of three distinct trajectories. Once a trajectory is selected, the method 

checks if the cost and loop constraints are satisfied. Fig. 4 shows an example of trajec-

tory test case which is the output of the method. 

To obtain a trajectory that meets all constraints defined by the user and the space 

configuration, the method proceeds into two steps. The first step is to define all edges 

allowed inside the space configuration and the associated cost on it. This part is done 

by the continuous constraint solver. At this stage, the method creates the model of the 

robot and runs the solver in order to define the possible link between nodes. 

Once the first step is done, by using a systematic exploratory approach, our method 

generates trajectory test case. The cost of the generated trajectory should satisfy the 

input constraint defined by the user (𝐶𝑚𝑎𝑥). To perform this, the approach is to check 

the cost of the trajectory each time an edge is added. 

In the same time, since loops on nodes are allowed, the method checks before choos-

ing a node if this one is already visited more than the input parameter defined by the 

user, 𝑁𝑙𝑜𝑜𝑝. Based on the same code than the cost function, the checking is performed 

on each node of the trajectory. 

4 Experimental setup and evaluation 

This part presents the implementation of our method which includes two distinct com-

ponents. The first is the Continuous Constraint Based Trajectories Generation, 

named CCB Generation and the second is the Trajectories Generation, called RT 

Generation. Both are executed for the automatic generation of trajectories test case. 

On one hand, the CCB Generation component computes a graph where the nodes 

represent points inside the space configuration. On the other hand, the RT Generation 

component generates the trajectories in order to run a test. 

4.1 CCB Generation component 

This component aims at computing the cost of all edges inside the robot space con-

figuration. It also defines the accessibility matrix, which is a table in which the cost of 

all edges is computed.  

Fig. 3. Space configuration modelling Fig. 4. Trajectory test case 
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To implement this first part of the method, we use a continuous domains solver, 

which is a part of constraint programming. In such a solver, variables take their values 

in a continuous domain with floating-point bounds. As the geometric shapes of the dis-

tinct zones and various individual moves of the robot are composed of non-linear in-

equations, we argue that a constraint solving over continuous domains is the appropriate 

tool to address the problem.  For the implementation of our approach, we use RealPaver 

[1], which is one of the several existing solvers on continuous domains, such as IBEX 

[2], NUMERICA [3] or, INTERLOG [4] just to name a few. We chose this solver for 

the experimentation because of its correctness to provide under- and over- approxima-

tion of the solution set and, its availability and simplicity of usage. RealPaver is used 

to check whether two points are reachable inside the robot configuration space and also 

to create the accessibility matrix. 

Based on the configuration space and considering 

two points, the continuous constraint solver is able to 

know if these points are reachable. Constraint solving 

over continuous domains works by successively prun-

ing the domains of each variable by using each con-

straint as a filter. By decomposing constraints in indi-

vidual projectors and iterating the application of the 

projectors over the domains using a specific filtering 

consistency, the approach is able to reach a fixpoint 

where no more pruning can be performed. The termination of the algorithm is guaran-

teed by the usage of abstract numerical values which are computed over floating-point 

values. As the number of floating-point values is finite (if standard fixed-size represen-

tation is used over 32, 64 or 128 bits), and as only domain shrinking is possible, the 

algorithm necessarily terminates and reached a fixpoint. 

We model the reachability problem by checking the non-existence of intersection 

between the line passing by the two points and the various forbidden areas. If the solver 

proves the absence of solutions (i.e., unsatifiability), then it means that the points are 

reachable, as there is no intersection between the move and the forbidden zones. If the 

solver returns an under-approximation of the solution set (with a guarantee of the ex-

istence of at least one solution [1]), it means that there exists an intersection between 

the line and a forbidden zone, and thus the points are not reachable. Fig. 5 shows the 

robot configuration space on an example. 

Extending this computation to other moves than moveL (direct line between two 

points) is possible but requires more in-depth examination. In fact, extending the model 

to moveC (circle arc between three points) requires to solve a variation problem when 

only two points are initially given. We need to generalize the previous principle for all 

possible triples where only two points are known. This is interesting but outside the 

scope of this paper. 

To compute the accessibility matrix, we run the solver on each pair of points of the 

space configuration. For each pair of points, a cost is computed based on some input 

parameters. For the sake of simplicity, in this paper, only the Euclidean distance (i.e., 

Fig. 5. Using of RealPaver 
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𝑑𝑖𝑗) between the points is integrated into the cost function, but, more advanced param-

eters can easily be inserted into this cost function. The matrix can be defined by the 

following rules: 

[𝑖][𝑗] = {
𝑖𝑓 𝐸𝑖𝑗 𝑒𝑥𝑖𝑠𝑡𝑠, 𝐶𝑖𝑗 = 𝑑𝑖𝑗

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  , 𝐶𝑖𝑗 = ∞
 

With i and j the two points under test, 𝐸𝑖𝑗  the edge formed by the nodes I and j, 𝐶𝑖𝑗 

the cost and 𝑑𝑖𝑗  the distance between nodes i and j. 

For a simpler under-

standing, the following 

presentation only deals 

with straight line motion. 

An example is given with 

N = 3. 

Once CCB Generation 

has calculated all the pos-

sibilities, the second com-

ponent uses the matrix of cost and the graph to generate trajectories. 

4.2 RT Generation component 

The RT Generation component is responsible of the trajectories test case generation. 

This component is based on the Depth First Search (DFS) algorithm with some varia-

tions to take into account the two above-mentioned parameters, 𝐶𝑚𝑎𝑥 and 𝑁𝑙𝑜𝑜𝑝  and the 

ending point. The search is executed on the generated graph and the matrix from the 

CCB Generation. Using DFS algorithm, all path with a cost lower than the input pa-

rameter 𝐶𝑚𝑎𝑥 is selected. All this paths create the test scenario. The search is going 

from node to node and at each iteration, the total cost of the trajectory is calculated. 

Once all paths are found, the test case is generated with all trajectories found by RT 

Generation. An example is to execute this method on an IRB1200 ABB robot, which is 

a 6DOF single-arm robot. The test case resulting of our method, for this specific robot, 

is a RAPID program describing motion instruction. This language is specific to this 

robot, but it is based on a template and can easily be converted to another language 

given the template. 

5 Evaluation 

Our first approach of the method was done in two-dimension space to prove the 

concept but the aim is to deal with six-dimension solution for industrial robots. The 

integration to a three-dimension space is relatively simple, as we change the equation 

inside the solver. However, to handle a six-dimension, it can be interesting to use a 

different space configuration, like the joint space. 

The proposed method has some limits that we discuss here. The first point, is the 

scalability of the method. The more points or loops are added, the more solutions are 

obtained with a fixed cost. This increases the time generation and all the generation 

process. To improve this, a solution is to take one trajectory only and generate it for a 

specific test scenario. 

Fig. 6. Output from the CCB Generation 
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Based on the experimental setup, in the worst cost case (𝐶𝑚𝑎𝑥 =  ∞), the following 

graph illustrates the evolution of the time execution in function of the input parameters, 

𝑁𝑙𝑜𝑜𝑝 and 𝑁𝑝𝑜𝑖𝑛𝑡𝑠:  

 

The goal of the following work is to find a trade-off between the three input param-

eters in order to integrate this process in a continuous integration. 

Another limitation of the methodology, is the problem of singularity points. A sin-

gularity is a specific configuration of the robot in 

which there are several solutions to reach the next 

point. Let us take an example with a robot’s wrist. 

In the figure presented here, if the robot wants to 

turn the tool mounted on the wrist, there are two 

solutions, the rotation “J4” or the rotation “J6”. In 

this case more than one solution is possible, the ro-

bot is not able to choose one of them and the sin-

gularity error is raised.  

With our approach, it is impossible to detect the error before the simulation of the 

test.  

One option is to change the orientation of the tool. This solution will be implemented 

when the method will operate on a six-dimension space. Another solution consists to 

use the joint space [5], [6] and calculates all axis to know if an axis will raise a singu-

larity. 

The presented methodology deals with single-arm robot, but the goal is to extend the 

approach in order to tackle configuration with multi robot system software, like a multi-

arm robot or a multi robot cell. This approach will be studied in the future.  

6 Conclusion 

The paper contributes to the definition of a new methodology to automatically generate 

a robot’s trajectories test scenario. The paper shows experimentally how to implement 

the method and how it can be used. The method has three distinct inputs and a trajec-

tories test case as an output. With the methodology that we propose, some intelligence 

is added to the current process of test case generation and more diversity is included. 

In the next step, the experimentation will be continued and compared with other 

solutions and the using of other solvers will be done. Moreover, some improvements 

should be added to the cost calculation. At this step, only the distance is considered, but 

the implementation should include all parameters described inside the contribution part. 

Computer configuration: 
• Core i-7, 3,6 GHz 

• 64 GB RAM 

 

Parameter configuration: 

• 𝐶𝑚𝑎𝑥 = 100000 

 

Fig. 7. Wrist singularity 
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Abstract. This article presents two probabilistic models for the alldifferent
constraint. We are interested in studying the combinatorial structure of
the alldifferent constraint. More specifically, we are interested in the
existence of solutions for an instance of alldifferent and to count them.
Such informations can be used in search heuristics. From this probabilis-
tic approach, we show how to compute some estimators of the number of
solutions and we use them in a search heuristics inspired by Counting-
Based Search heuristics.

1 Introduction

In this article, we are interested in studying the combinatorial structure of some
problems in order to be more efficient when exploring the solution space and
when propagating the constraints. More specifically, we are interested in cardi-
nality constraints. Cardinality constraints concerns the number of occurrences
of values in a solution. We propose to study the alldifferent constraint [9],
which constrains every value to appear at most once in a solution. The models
that we present aim to be adapted for other cardinality constraints, as they have
similar structure.

These probabilistic models will allow us to estimate the number of solutions
for an instance of alldifferent. Solutions counting, in the constraint program-
ming field, have already been studied by Pesant et al. [7]. They presented a
heuristic, called Counting-Based Search, which suggest to explore first the area
where there are likely more solutions. Counting solutions is at least as hard as
the problem is. Pesant et al. therefore proposed an upper bound, less costly to
compute, of the number of solutions for an instance of alldifferent and used
it as an heuristic to explore the solution space.

These models are similar to the one proposed in [1]. It also presents a proba-
bilistic model for alldifferent: the authors randomize the domain of the vari-
ables and estimate the probability that an instance of alldifferent is bound-
consistent (BC) and show two asymptotic schemes depending on the ratio num-
ber of variables / number of values. The main difference with our model is that
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Boisberranger et al. propose to randomize the domain of the variables, restricting
those domains to be intervals. Also, they are interested in the probability that
an instance of alldifferent is bound-consistent and show that it is not always
necessary to apply the filtering algorithm, which is costly. In our study, we only
focus on a probabilistic way to estimate the number of solutions. We give two new
estimators to count the number of solutions for an instance of alldifferent.
We compare the quality of these estimator to the bound proposed in [7]. Then,
we compare the efficiency of those estimators within Counting-Based Search on
small problems.

2 Preliminaries

Let X = {x1, . . . , xn}, the set of variables. For each variable xi ∈ X, we note Di

its domain and Y =
⋃n
i=1Di = {y1, . . . , ym}, the union of the domains. We now

define formally the constraint alldifferent and the value graph of X.

2.1 The alldifferent constraint

Definition 1 (alldifferent [9]). A constraint alldifferent(X) is satisfied
iff each variable xi ∈ X is instantiated to a value of its domain Di and each value
yj ∈ Y is chosen at most once. We define formally the set of allowed tuples:

SX = {(d1, . . . , dn) ∈ D1 × . . .×Dn | ∀i, j ∈ {1, ..., n},
i 6= j ⇒ di 6= dj}

Definition 2 (Value Graph). Let GX = G(X ∪ Y,E), the value graph of X
with E = {(xi, yj) | yj ∈ Di}. GX is a bipartite graph representing the domain
of each variable. There is an edge between xi and yj iff yj ∈ Di

Example 1. Let X = {x1, x2, x3, x4, x5} with D1 = {1, 2, 4}, D2 = {2, 3}, D3 =
{1, 2, 3, 5}, D4 = {4, 5} et D5 = {2, 4, 5}. We obtain the value graph GX such
as on Figure 1a. The tuples {1, 3, 5, 4, 2} and {1, 2, 3, 5, 4} are two solutions of
alldifferent(X).

2.2 Existence and solution counting

One property of the value graph, that is of great interest, is that a matching
covering the variables corresponds to a solution of alldifferent(X) [4].

Proposition 1. The set of solutions of alldifferent(X) is in bijection with
the set of matchings of GX covering X.

To count the solutions of alldifferent(X), we need to count the number
of matchings covering X in GX . We now introduce the biadjacency matrix and
the permanent. The following definitions can be found in [6].
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x1

x2

x3

x4

x5

1

2

3

4

5

(a) Value Graph GX of the Exam-
ple 1

B(GX) =




1 1 0 1 0
0 1 1 0 0
1 1 1 0 1
0 0 0 1 1
0 1 0 1 1




(b) The biadjacency matrix of the
value graph

Fig. 1. Value graph and biadjacency matrix of Example 1.

Definition 3 (Biadjacency matrix). Let G(U ∪ V,E), a bipartite graph. We
define B(G) = (bij), its biadjacency matrix, such as ∀ui ∈ U,∀vj ∈ V, bij =
1, if (ui, vj) ∈ E and bij = 0, otherwise.

Example 2. Figure 1b represents the biadjacency matrix of the value graph of
Example 1.

Definition 4 (Permanent). Let A = (aij) ∈ Mn,n, a square matrix and Sn,
the group of permutations over {1, . . . , n}. The permanent of A is defined as:

Perm(A) =
∑

σ∈Sn

n∏

i=1

aiσ(i) (1)

A bipartite graph is called balanced if the two parts are the same size and
a matching is called perfect if it covers every node of the graph. We can find a
perfect matching in a bipartite graph only if it is balanced. Proposition 2 gives
a way to count perfect matchings in such bipartite graphs.

Proposition 2. Let G a balanced bipartite graph and B(G) its biadjacency ma-
trix. We note #PM(G), the number of perfect matchings in G, then:

#PM(G) = Perm(B(G)) (2)

In our case, there can be less variables than values, then the value graph is not
balanced. If the value graph GX is unbalanced then #PM(GX) is the number
of matchings covering X. Pesant et al. [7] explains that we can compute the
number of matchings covering X anyway by adding fake variables, that can be
instantiated to every value, to balance the value graph. We call G′X the modified
value graph. They showed that:
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#PM(GX) =
#PM(G′X)

(m− n)!

With Proposition 1, we can conclude on Corollary 1:

Corollary 1. The number of allowed tuples of alldifferent(X) is

|SX | =
Perm(B(G′X))

(m− n)!
(3)

Example 3. The instance alldifferent(X) of Example 1 has

Perm (B(GX)) = 8 solutions.

2.3 Upper bound on the number of solutions

The permanent is very costly to compute as it considers a sum over a group
of permutations, which is of exponential size [10]. Therefore, Pesant et al. [7]
propose to use an upper bound to estimate the number of solutions. They use
the Brégman-Minc [2] upper bound and the Liang-Bai [5] upper bound:

Proposition 3 (Brégman-Minc Upper Bound). We note di, the size of the
domain Di, then:

|SX | ≤ UBBM (X) =
∏

(di!)
1
di (4)

Proposition 4 (Liang-Bai Upper Bound). We note di, the size of the do-
main Di and qi = min(ddi+1

2 e, d i2e), then:

|SX | ≤ UBLB(X) =
n∏

i=1

√
qi(di − qi + 1) (5)

As neither of these two bounds dominate the other, Pesant et al. choose to
upper bound the number of solution this way:

|SX | ≤ UBPZQ(X) = min(UBBM (X), UBLB(X)) (6)

In next section, we present two new estimators of the number of solutions,
based on a probabilistic approach. These estimators will be integrated in Count-
ing Based Search heuristics in order to compare their efficiency with the bound
proposed by Pesant et al.

3 A probabilistic approach for alldifferent

We present two probabilistic models for the alldifferent constraint. In both
models, we propose to randomize the domain of the variables and then to study
the expected number of solutions.
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3.1 The Erdős-Renyi Model

Erdős and Renyi [3] introduced random graphs and studied the existence and
the number of perfect matchings on these random structures. Applied directly
to our problem, the idea is to randomize the domain of each variable such that :
for all xi ∈ X and for all yj ∈ Y , the event {yj ∈ Di} happens with a predefined
probability p ∈ [0, 1] and all such events are independent:

P({yj ∈ Di}) = p ∈ [0, 1] (7)

Proposition 5. According to the Erdős-Renyi Model, the number of allowed
tuples of alldifferent(X) is expected to be:

EER(|SX |) =
m! · pn

(m− n)!
(8)

Proof. To simplify notation, we note B = B(GX), the biadjacency matrix of the
random value graph and, similarly, B′ = B(G′X). The matrix B can be seen as a
random matrix, for which each element is a random 0-1 variable Bij such that
P ({Bij = 1}) = p. According to Corollary 1, we have

E(|SX |) = E
(
Perm(B′)
(m− n)!

)

= E

(
1

(m− n)!

∑

σ∈Sm

m∏

i=1

B′iσ(i)

)
= E

(
1

(m− n)!

∑

σ∈Sm

n∏

i=1

Biσ(i)

)

because ∀i > n,B′ij = 1 and ∀i ≤ n,B′ij = Bij . The operator expectancy is
linear and ∀σ ∈ Sm,∀i ∈ {1, . . . , n} the random variablesBiσ(i) are independent,
then

E(|SX |) =
1

(m− n)!

∑

σ∈Sm

n∏

i=1

E
(
Biσ(i)

)

=
1

(m− n)!

∑

σ∈Sm

n∏

i=1

p =
m! · pn

(m− n)!

ut

When n = m, the expectancy of the number of solution is n! · pn. This result
have been shown in [3]. We extended it here to unbalanced bipartite graph.

This model is quite simple as it considers only one parameter to modelize an
instance of alldiferent. We have an estimator of the number of allowed tuples
only based on the edge density in the graph. In Example 1, we have n = m = 5
and there are 14 edges, then the edge density is 14

25 = 0, 56. We can expect
5! · 0, 565 = 6, 61 solutions (there are actually 8 solutions).

The next model considers the size of each domain, we expect the resulting
estimator to be sharper.
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3.2 Random instances with fixed domains size (FDS model)

Let {d1, . . . , dn}, be the predefined size of each domain. In this model, we pick
randomly uniformly an instance of alldifferent among those which, for each
variable xi ∈ X, the corresponding domain size is |Di| = di. We define E(d1,...,dn),
the set of such instances:

E(d1,...,dn) = {alldifferent(X) | ∀xi ∈ X, |Di| = di}

If we pick randomly uniformly an instance from E(d1,...,dn), then we can eval-
uate the probability that a value yj is in the domain Di:

P({yj ∈ Di}) =
#number of configurations including yj

#number of possible configurations

=

(
m−1
di−1

)
(
m
di

) =
di
m

It is important to notice that for two different values yj1 and yj2 and for a
same domain Di, the events {yj1 ∈ Di} and {yj2 ∈ Di} are not independent,
unlike the Erdős-Renyi model. However, for two different domains Di1 and Di2

and for any pair of value yj1 and yj2 (possibly the same), the events {yj1 ∈ Di1}
and {yj2 ∈ Di2} are independent.

Proposition 6. According to the FDS Model, the number of allowed tuples of
alldifferent(X) is expected to be:

EFDS(|SX |) =
m!

(m− n)! ·mn
·
n∏

i=1

di (9)

Proof. The proof is very similar to the proof of Proposition 5. ut

From Example 1, we have n = m = 5 and the domain size are: d1 = 3, d2 =
2, d3 = 4, d4 = 2 and d5 = 3. We can expect 5!

55 · 3 · 2 · 4 · 2 · 3 = 5, 53 solutions.
On this example the expectancy with the Erdős-Renyi model is more accurate.

4 Experimental analysis

We first present a qualitative analysis of the different estimators. Then, we adapt
the Counting-Based search strategy, presented in [7], so that it is guided by the
estimators presented in Section 3 and not only the upper bound from Section 2.
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4.1 Qualitative analysis on alldifferent instances

For this qualitative analysis, we have generated randomly and uniformly 10000
instances of alldifferent, which present at least one solution, with n = 10
variables and m = 10 values. We choose randomly a parameter p and we generate
an instance according to the Erdős-Renyi model. For each of those instances, we
have computed the three estimators of the number of solutions and we compare
them to the real number of solutions. Figure 2 shows the percentage of instances
for different ranges of relative gap between the value of the estimators and the

real number of solutions. The relative gap is computed this way : ∆ = |est−real|
real

where est is the value of the estimator and real is the value of the true number
of solutions.
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Fig. 2. Percentage of instances per relative gap for each estimator

We notice that the third estimator, the expectancy according to the FDS
model, seems more accurate as, for about 40% of instances, the relative gap
is less than or equal to 0.05 and, for less than 10% of instances, the relative
gap is superior to 1. The expectancy according to the Erdős-Renyi model is less
accurate. As for the upper bound UBPZQ, it is very far from being accurate.

These results can be explained by the fact that the two last estimators corre-
spond to the expected number of solutions according to Erdős-Renyi model and
FDS model, whereas the first estimator is an upper bound. The FDS estima-
tor is more accurate than the ER estimator, as it considers the distribution of
domains size and not only the density of edges. For search strategies, the corre-
lation between the estimator and the real number of solutions is more important
than the quality of the estimator. In next subsection, we compare the efficiency
of Counting-Based search for the three estimators.

4.2 Estimators’ efficiency within Counting-Based Search

We have adapted the maxSD heuristic presented in [7], originally designed with
the PZQ estimator, such that the solution densities are computed from the ER
estimator and the FDS estimator. We first wanted to compare the efficiency of
the three estimators by running the three version of maxSD on two different
problems: the Quasigroup Completion problem with holes and the Magic Square
problem. Both can be expressed with one or several alldifferent constraints.
Some known hard instances of those problems have been generated by Pesant et
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al. Unfortunately, our implementation of the three versions of maxSD is still a
bit naive and it takes several hours to run one of those instances. Therefore, we
decided to generate randomly easier instances.

Concerning the Quasigroup Completion problem, we did not manage to gen-
erate easier non-trivial instances. The generated instances are solved (or prove
to be unsatisfying) during the first or second propagation stage, which is not
interesting when comparing search strategies.

As for the Magic Square problem, we randomize the instances this way: given
n, the dimension of the problem and c the number of filled cases in the square
at the beginning, we choose randomly uniformly c cases in the square, that we
fill randomly uniformly among the number of possible arrangements An

2

c .

To solve the generated instances, we have implemented each version ofmaxSD
in the solver Choco v4.0.6 [8]. Figure 3 shows the evolution of the number of
solved instances with the number of backtracks. For these plots, we have ran-
domly generated 20 instances of Magic Squares with n = 5 and c = 5 and 20
instances for n = 5 and c = 10.
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Fig. 3. % solved instances per number of backtracks for different parameters

We noticed that maxSD with the ER estimator and the FDS estimator
surprisingly behave in a very similar way. For this reason we plot one curve for
those two estimators in both charts. We do not have any explanation for this
phenomenon yet. Also, it appears like, for these generated instances, maxSD
with the two expectancy estimators performs better, especially for the hardest
instances (Figure 3a).

5 Conclusion

In this paper, we have presented two probabilistic models for alldifferent

and two estimators of the number of solutions. We have adapted the Counting-
Based search strategy for those new estimators. We still need to work on their
implementation so we can run them on bigger and harder instances. Yet, the
results so far are encouraging. We also think to adapt these probabilistic models
to other cardinality constraints.
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James Trimble1, Ciaran McCreesh1, and Patrick Prosser1

University of Glasgow, Glasgow, Scotland
j.trimble.1@research.gla.ac.uk

Abstract. In the maximum common edge subgraph problem, the objec-
tive is to find a graph with as many edges as possible that is simultaneously
a non-induced subgraph of each of two input graphs. We report our re-
sults from adapting a recent algorithm for maximum common induced
subgraph, using a well-known reduction using line graphs. We also intro-
duce three new direct constraint program encodings for the problem, and
describe a new dedicated solver.

Keywords: Maximum common subgraph · Line graph · Constraint
programming

1 Introduction

This paper considers the problem of finding a subgraph that appears in each of
two input graphs and has as many edges as possible. This problem has numerous
applications in biology and chemistry [12], and has also been applied in computer
science to a problem of mapping tasks to processors [3]. All of the graphs we
consider are undirected, unlabelled, and without loops.

Given two input graphs P and T (for “pattern” and “target”), the maximum
common edge subgraph problem (MCES) is to find a graph with as many edges
as possible that is isomorphic to a subgraph of P and to a subgraph of T
simultaneously. These subgraphs are not required to be induced; that is, there
can be edges present in either input graph that are not present in the subgraph.

MCES is NP-hard by a simple reduction from Hamiltonian Cycle: the
graph in the Hamiltonian Cycle instance becomes the target graph in the
MCES instance, and a cycle graph with the same number of vertices becomes
the pattern graph. However, a variant of MCES in which the found subgraph is
required to be connected can be solved in polynomial time on outerplanar graphs
of bounded degree [1].

The maximum common induced subgraph (MCIS) problem—which we will
take advantage of to solve MCES—is defined similarly, but the objective is to
find a subgraph with as many vertices as possible, and the subgraphs must be
induced. The two graphs on the left of fig. 1 show an example of an MCES
instance; the two graphs on the right show an MCIS instance. In each case, an
optimal solution is highlighted.

? Supported by EPSRC.
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Fig. 1. The two graphs on the left are the pattern and target of a MCES instance, with
an optimal solution (6 edges) highlighted. The two graphs on the right are the pattern
and target of an MCIS instance, with an optimal solution (4 vertices) highlighted.

In this paper, we give preliminary results comparing three new approaches
to solving MCES. The first of these approaches is to use constraint program
encodings with an off-the-shelf CP solver. The second uses a modified version of
a recent MCIS solver, McSplit, on the line graphs of the two input graphs. The
third solves MCES directly, using a data structure and a propagation algorithm
similar to those in McSplit. We find that the dedicated algorithms are orders of
magnitude faster than our CP models.

Section 2 outlines related prior work. Section 3 describes our three new
methods for solving the problem. Section 4 presents experimental results. Section 5
concludes and gives directions for further work.

2 Related work

McGregor [9] gives an early forward-checking algorithm in which decisions are
made by mapping a vertex in P to a vertex in T . A matrix—which has a row for
each edge in P and a column for each edge in T—keeps track of the remaining
feasible edge assignments. The upper bound used is simply the number of rows
in the matrix containing at least one non-zero value.

The line graph of a graph G = (V ,E ) is a graph with a vertex for each element
of E , such that two vertices are adjacent if and only if their corresponding edges in
G share an endpoint. By a result due to Whitney [14], we can find the maximum
common edge subgraph of two graphs by searching for a maximum common
induced subgraph on their line graphs. Several algorithms for MCES, such as
RASCAL [11], use this method. This approach has a single pitfall: the triangle
graph K3 and the claw graph K1,3 (fig. 2) both have K3 as their line graph, and
it is possible that identical induced subgraphs of the line graphs correspond to
subgraphs of the original graph with a triangle-graph connected component of
one graph replaced by a claw-graph connected component of the other. Due to
the shapes of the graphs, this is known as a ∆Y exchange. It is straightforward
to check for this occurrence during search, and to backtrack when it is detected.
RASCAL does this by comparing the degree sequences of the subgraphs of the
original graphs.

Marenco [7] and Bahense et al. [2] formulate MCES as an integer program,
and solve it using techniques including branch-and-cut.
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Fig. 2. The graphs K3 and K1,3.

3 Our Methods

In this section, we describe the methods we have used to solve maximum common
edge subgraph: a set of three CP models implemented in MiniZinc, and two
dedicated solvers inspired by CP techniques.

3.1 CP Models

We have implemented three constraint program models for MCES in the MiniZinc
language. In each case, we assume without loss of generality that the pattern
graph has no more vertices than the target graph. The first (and simplest) model
(fig. 3) has one variable for each vertex in the pattern graph, and one value for
each vertex in the target graph. An alldifferent constraint over the set of variables
ensures that no target vertex is used twice. The objective function counts the
number of adjacent pairs of pattern vertices that are mapped to adjacent target
vertices.

int: np; % order of pattern graph

int: nt; % order of target graph

set of int: VP = 1..np; % pattern vertices

set of int: VT = 1..nt; % target vertices

array[VP, VP] of int: P; % adjacency matrix of pattern graph

array[VT, VT] of int: T; % adjacency matrix of target graph

array[VP] of var VT: m; % pattern vertex -> target vertex mappings

var 1..np*(np-1): objval;

constraint objval = sum (v in VP, w in VP where w > v /\ P[v, w]==1)

(T[m[v], m[w]]);

constraint alldifferent(m);

solve :: int_search(m, first_fail, indomain_split, complete)

maximize objval;

Fig. 3. The first MiniZinc model

A second MiniZinc model could construct a mapping from edges to edges.
However, doing so would require a large number of disjunctive constraints to
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enforce incidence. We solve this problem by instead mapping pattern edges to
oriented target edges, having two values per target edge in each variable. We
also have an additional value ⊥ signifying that the pattern edge is not used.
Constraints ensure that if two pattern edges are assigned to target edges, then
they have a shared endpoint if and only if their assigned target edges share the
corresponding endpoint. An alldifferent-except-⊥ constraint ensures that each
edge value is used only once. Finally, a set of constraints ensures that a single
target edge may not be used in both orientations. The objective value is the
count of variables that take non-⊥ values. This model is intricate, and we do not
list it here for space reasons.

Our third model (fig. 4) includes the vertex variables and alldifferent constraint
of model 1, and the edge variables and objective function of model 2. A set of
constraints ensures that an edge variable takes a particular edge value if and only
if the vertex variables corresponding to the pattern edge’s endpoints take the
values corresponding to the target edge’s endpoints.

int: np; % order of pattern graph

int: nt; % order of target graph

int: mp; % size of pattern graph

int: mt; % size of target graph * 2

% (i.e. number of oriented edges)

set of int: VP = 1..np; % pattern vertices

set of int: VT = 1..nt; % target vertices

array[VP, VP] of int: P; % adjacency matrix of pattern graph

array[VT, VT] of int: T; % adjacency matrix of target graph

array[1..mp, 1..2] of int: PE; % edge list of pattern graph

array[1..mt, 1..2] of int: TE; % oriented edge list of target graph

array[VP] of var VT: m; % pattern vertex -> target vertex mappings

array[1..mp] of var 0..mt: m_edge; % pattern edge index -> target

% edge index mappings. 0 means _|_

var 1..mp: objval;

constraint forall (i in 1..mp, j in 1..mt)

(m_edge[i]==j <-> (m[PE[i,1]]==TE[j,1] /\ m[PE[i,2]]==TE[j,2]));

constraint objval = sum (a in m_edge) (a != 0);

constraint alldifferent(m);

solve :: int_search(m_edge, first_fail, indomain_split, complete)

maximize objval;

Fig. 4. The third MiniZinc model
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3.2 McSplit

Our first dedicated solver is based on McSplit, a recent algorithm for the MCIS
problem [8]. McSplit is a forward-checking algorithm, with a variable for each
vertex in the pattern graph and a value for each vertex in the target graph, along
with a dummy value ⊥ representing that the pattern vertex is not used. During
search, any two domains are either disjoint (if we ignore ⊥) or identical; this
special structure of the problem allows domains to be stored in a compact data
structure in which variables with identical domains share a single representation
of their domain in memory. McSplit implements the soft all-different bound [10]
in linear time by exploiting this special structure to avoid having to perform a
matching, and uses variable-ordering heuristics inspired by the dual viewpoint
[5].

We do not call McSplit directly on the pattern and target graphs, but rather
on their line graphs, using the method described in section 2. To detect ∆Y
exchanges, we maintain a counter for each vertex in the original pattern and
target graphs, which records how many incident edges (represented by vertices
in the line graphs) are currently being used. If the number of non-zero counters
for the pattern graph differs from the number of non-zero counters for the target
graph, a ∆Y exchange has occurred and it is necessary to backtrack.

3.3 SplitP

Our second dedicated solver, SplitP, shares the compact data structures and
the forward-checking of McSplit, and uses a similar partitioning algorithm to
filter domains. However, SplitP does not use line graphs, but rather models the
problem directly in style of our MiniZinc models 2 and 3, with variables for
pattern edges and values for oriented target edges.

We use the example graphs in fig. 5 to illustrate SplitP’s data structures.

1

2

3

a b

c

d

Fig. 5. Example graphs P and T

Initially, each pattern edge (which we denote by its endpoints; for example
(1, 2)) has all four target edges in its domain. Rather than storing the four
domains separately, we store the same information using two arrays of edges. In
addition, we store the integer 2 to signify that either orientation of a target edge
may be chosen (for example, edge (1, 2) may be mapped to either (a, b) or (b, a)).
Thus, before any tentative edge assignments are made, the domains are stored as:

[(1, 2), (1, 3), (2, 3)] [(a, b), (a, c), (b, c), (c , d)] 2

Now, suppose that the algorithm has made the tentative assignment of pattern
edge (1, 2) to target edge (a, c). Edge (1, 3) has (a, b) and ⊥ in its domain, while
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edge (2, 3) has (c, b), (c, d) and ⊥ in its domain. These domains are stored
as follows (with the 1 at the end of each line signifying that only the shown
orientation of each target edge is permitted).

[(1, 3)] [(a, b)] 1

[(2, 3)] [(c , b), (c , d)] 1

We can view the McSplit approach (where values correspond to vertices in
the target line graph, and thus effectively correspond to unoriented edges in
the original target graph) as delaying the decision of which way to orient the
target edges until after finding an optimal solution. SplitP, by contrast, makes
orientation decisions as early as possible.

3.4 “Down” variants

The branch-and-bound solvers McSplit and SplitP attempt to find increasingly
large incumbent subgraphs. In addition, we have implemented variants of these
two algorithms that take the opposite approach, solving a sequence of decision
problems where we first ask whether we can find a subgraph that uses all of the
edges in the smaller graph, then all edges but one, and so on. These are named
McSplit↓ and SplitP↓. (A version of McSplit↓ for MCIS was introduced in [8];
this used the approach of Hoffmann et al. [6].)

4 Experiments

For our experiments, we used a database of randomly-generated pairs of graph
[13, 4]. To keep the total run time manageable, we selected the first ten instances
from each family with no more than 35 vertices, giving a total of 2750 instances.

We used a cluster of machines with Intel Xeon E5-2697A v4 CPUs. For the CP
models, MiniZinc 2.1.7 and the Gecode solver were used. We used the first fail

and indomain split MiniZinc search annotations for these models.
Our experiments cover only the new approaches introduced in this paper,

and do not provide a comparison with existing state-of-the-art algorithms. We
intend to provide a fuller comparison—using more solvers and more families of
instances—in a future version of this paper.

Figure 6 shows a cumulative plot of run times. Each point on a curve indicates
the number of instances that were, individually, solved in less than a time shown
on the horizontal axis. For example, approximately 200 of the instances could be
solved by the MiniZinc 1 model in 1000 ms or less per instance.

The dedicated solvers are more three orders of magnitude faster than the
fastest MiniZinc model (model 3). The ↓ variants are slightly faster than the
branch-and-bound variants, and each version of SplitP is around twice as fast as
its corresponding McSplit program.

The first plot of Figure 7 is a scatter plot of run times for SplitP↓ and
McSplit↓, with one point per instance. The second plot shows search node counts.
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Fig. 6. Cumulative plot of run times

Instances where either algorithm timed out are not shown on the second plot.
On most instances, McSplit↓ takes slightly more time and search nodes than
SplitP↓. This difference is perhaps down to small differences in the choices made
for variable and value ordering heuristics. While both McSplit↓ and SplitP↓ use
a smallest-domain-first variable ordering, McSplit↓ breaks ties on degree in the
linegraph, while SplitP↓ uses dynamic heuristics. We plan to carry out further
investigations into tie-breaking rules in the future.
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Fig. 7. Scatter plots of run times and search nodes, SplitP↓ versus McSplit↓. Each
point represents one instance.
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Figure 8 shows run times and search nodes for SplitP and SplitP↓. SplitP↓ is
seldom more than three times slower than the branch-and-bound variant, and is
often orders of magnitude faster.
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Fig. 8. Scatter plots of run times and search nodes, SplitP versus SplitP↓. Each point
represents one instance.

5 Conclusion

We have implemented three constraint program models for maximum common
edge subgraph, and two dedicated solvers inspired by constraint programming
techniques. Of the CP models, we found the most effective to be a model
containing variables for both vertices and edges. The dedicated solvers were
orders of magnitude faster than the CP models; of these, the SplitP↓ and
McSplit↓ variants were faster than their branch-and-bound counterparts. SplitP
was somewhat faster than McSplit, but this may be simply due to the choices of
variable and value ordering heuristics.

Although the CP models ran much more slowly than the dedicated algo-
rithms, they have the advantage of flexibility: it would be straightforward to add
additional constraints to the model if required. By contrast, it is unlikely that
additional constraints could easily be used with the compact data structures of
McSplit and SplitP.

In the future, we plan to extend our programs to handle labels on vertices
and edges, and directed edges. We will also investigate a weighted version of the
problem, where each mapping between an edge in the pattern graph and an edge
in the target graph has an associated weight. We believe that a reduction to
maximum weight clique using an association graph encoding could be used to
solve this problem.

We also intend to run a fuller set of experiments, comparing against exist-
ing state-of-the-art algorithms and studying the effect of heuristics on solver
performance.



Three New Approaches for the Maximum Common Edge Subgraph Problem 9

References

1. Akutsu, T., Tamura, T.: A polynomial-time algorithm for computing the max-
imum common connected edge subgraph of outerplanar graphs of bounded
degree. Algorithms 6(1), 119–135 (2013). https://doi.org/10.3390/a6010119,
https://doi.org/10.3390/a6010119

2. Bahiense, L., Manic, G., Piva, B., de Souza, C.C.: The maximum common
edge subgraph problem: A polyhedral investigation. Discrete Applied Mathe-
matics 160(18), 2523–2541 (2012). https://doi.org/10.1016/j.dam.2012.01.026,
https://doi.org/10.1016/j.dam.2012.01.026

3. Bokhari, S.H.: On the mapping problem. IEEE Trans. Comput-
ers 30(3), 207–214 (1981). https://doi.org/10.1109/TC.1981.1675756,
https://doi.org/10.1109/TC.1981.1675756

4. Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common
subgraph detection algorithms: A performance analysis of three algorithms on
a wide database of graphs. J. Graph Algorithms Appl. 11(1), 99–143 (2007),
http://jgaa.info/accepted/2007/ConteFoggiaVento2007.11.1.pdf

5. Geelen, P.A.: Dual viewpoint heuristics for binary constraint satisfaction problems.
In: ECAI. pp. 31–35 (1992)

6. Hoffmann, R., McCreesh, C., Reilly, C.: Between subgraph isomorphism and
maximum common subgraph. In: Singh, S.P., Markovitch, S. (eds.) Proceed-
ings of the Thirty-First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA. pp. 3907–3914. AAAI Press (2017),
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14948

7. Marenco, J.: Un algoritmo branch-and-cut para el problema de mapping. Ph.D.
thesis, Masters thesis, Universidad de Buenos Aires, 1999. (1999)

8. McCreesh, C., Prosser, P., Trimble, J.: A partitioning algorithm for maximum
common subgraph problems. In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017. pp. 712–719 (2017). https://doi.org/10.24963/ijcai.2017/99,
https://doi.org/10.24963/ijcai.2017/99

9. McGregor, J.J.: Backtrack search algorithms and the maximal com-
mon subgraph problem. Softw., Pract. Exper. 12(1), 23–34 (1982).
https://doi.org/10.1002/spe.4380120103, https://doi.org/10.1002/spe.4380120103
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Abstract. In this paper, we introduce a new constraint solver aimed at
analyzing the round-off errors that occur in floating-point computations.
Such a solver allows reasoning on round-off errors by means of constraints
on ranges of error values. This new solver is built by incorporating in a
solver for constraints over the floating-point numbers the domain of er-
rors which is dual to the domain of values. Both domains, the domain of
values and the domain of errors, are associated with each variable of the
problem. Additionally, we introduce projection functions that filter these
domains as well as the mechanisms required for the analysis of errors.
Preliminary experiments are encouraging.
Numerous works, which are based on an overestimation of actual errors,
try to address similar issues. However, they do not provide critical in-
formation to reason on those errors, for example, by computing input
values that exercise a given error.
To our knowledge, our solver is the first constraint solver with such rea-
soning capabilities over round-off errors.

Keywords: floating-point numbers · round-off error · constraints over
floating-point numbers · domain of errors

1 Introduction

Floating-point computations induce errors due to rounding operations required
to close the set of floating-point numbers. These errors are symptomatic of the
distance between the computation over the floats and the computation over the
reals. Moreover, they are behind many problems, such as the precision or the
numerical stability of floating-point computation. Especially when users omit
to take into account the nature of floating-point arithmetic and use it directly
like real number arithmetic. Identifying, quantifying and localizing those errors
are tedious tasks that are difficult to achieve without tools automating it. A
well-known example of computations deviation due to errors on floating-point
numbers is Rump’s polynomial [15]:

333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b
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where a = 77617 and b = 33096. The exact value of this expression, computed
using the GMP library, is − 54767

66192 ≈ −0.827396056.

However, when this expression is evaluated on simple floats with a rounding
mode set to the nearest even, the computed result is ≈ −6.3382530011411×1029,
which is far apart from the real value. The difference between these two results,
about −6.3382530011411×1029, emphasizes the need for round-off error analysis
tools.

Floating-point computation errors have been the subject of many works based
on an overestimation of actual errors. Let us mention the abstract interpreter
Fluctuat [6, 5] that combines affine arithmetic and zonotopes to analyze the ro-
bustness of programs over floating-point numbers. Another more recent work,
PRECiSA [17, 13], relies on static analysis to evaluate round-off errors in a pro-
gram. Nasrine Damouche [2] and Eva Darulova [3] have developed techniques for
the automatic enhancement of numerical code. Their approach is based on an
evaluation of round-off errors to estimate the distance between the expression
over floats and the expression over reals. These approaches compute an error
estimation which can be refined by splitting the search space into subdomains.
However, it is not possible to directly reason on those errors, for example, by
computing input values that exercise a given error. In order to overcome this
lack of reasoning capabilities and to enhance the analysis of errors, we propose
to incorporate in a constraint solver over floats [18, 10, 1, 11, 12], the domain of
errors which is dual to the domain of values. Both domains are associated with
each variable of the problem. Additionally, we introduce projection functions
that filter those domains as well as mechanisms required for the analysis of er-
rors. More precisely, we focus on the analysis of deviation between computations
over the floats and computations over the reals.

Our approach is based on interval arithmetic for approximating the domains
of errors. In addition, a search applied on reduced domains computes input
values that satisfy constraints on errors. We deliberately ignore the possibility
of an initial observational error on input data even though initial computational
errors are handled. Thus input data are assumed with an initial error of zero.
For the sake of simplicity, we restrain ourselves to the four classical arithmetic
operations. This simplification permits exact computation of values over reals1

for both values of expressions and computation of errors. Finally, the rounding
mode is left to default, i.e. a rounding to the nearest even.

2 Notation and definitions

2.1 Floating-point numbers

The set of floating-point numbers is a finite subset of the rationals that has been
introduced to approximate real numbers on a computer. The IEEE standard for

1 By using a rational arithmetic library for computation on the reals and down to the
memory limit.
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floating-point arithmetic [9] defines the format of the different types of floating-
point numbers as well as the behavior of arithmetic operations on these floating-
point numbers. In the sequel, floating-point numbers are restricted to the more
common one i.e. simple binary floating-point numbers represented using 32 bits
and double binary floating-point numbers represented using 64 bits.

A binary floating-point number v is represented by a triple (s, e,m) where s
is the sign of v, e, its exponent and m, its mantissa. When e > 0, v is normalized
and its value is given by :

(−1)s × 1.m× 2e−bias

where the bias allows us to represent negative values of the exponent. For in-
stance, for 32 bits floating-point numbers, the size of s is 1 bit, the size of e is 8
bits, the size of m is 23 bits and the bias is equal to 127.

x+ denotes the smallest floating-point number strictly larger than x while
x− denotes the largest floating-point number strictly smaller than x. In other
words, x+ is the successor of x while x− is its predecessor.

An Ulp, which stands for unit in the last place, is the distance which separate
two consecutive floating-point numbers. However, this definition is ambiguous
for floats that are a power of 2 like 1.0: in such a case, and if x > 0, then
x+ − x = 2 ∗ (x− x−). To make this point clear, an explicit formulation of this
distance is used whenever required.

3 Quantification of computation deviations

Computation on floating-point numbers is different from computation over real
numbers due to rounding operations. Since the set of floating-point numbers is a
finite subset of the real, in general, the result of an operation on the floats is not
a float. In order to close the set of floating-point numbers for those operations,
the result should be rounded to the nearest float according to a direction chosen
beforehand.

The IEEE 754 norm [9] defines the behavior of floating-point arithmetic.
For the four basic operations, it requires correct rounding, i.e. the result of an
operation over the floats must be equal to the rounding of the result of the
equivalent operation over the reals. More formally, z = x � y = round(x · y)
where z, x and y are floating-point numbers, � is one of the four basic arithmetic
operations on the floats, namely, ⊕, 	, ⊗, and �, · being the equivalent operation
on the reals, and round being the rounding function. This property bounds the
error introduced by an operation over floats to ± 1

2ulp(z) for correctly rounded
operations with a rounding mode set to round to the nearest even float, which
is the most frequent rounding mode.

When the result of an operation on the floats is rounded, it is different from
the one expected on the reals. Moreover, each operation that belongs to a com-
plex expression is likely to introduce a difference between the expected result on
the reals and the one computed on the floats. Whereas for a given operation,
the computed float is optimal in terms of rounding, the accumulation of these
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approximations can lead to significant deviations, like the one observed with
Rump’s polynomial.

Compared to its equivalent over the reals, the deviation of a computation
over the floats takes root in each elementary operation. Therefore, it is possi-
ble to rebuild it from the composition of each elementary operation behavior.
Input variables can come with errors attached due to previous computations.
For example, for the variable x, the deviation on the computation of x, ex, is
given by ex = xR− xF where xR and xF denote the expected results on the reals
and on the floats respectively. Contrary to an observational error, ex is signed.
This choice is required to capture correctly specific behaviors of floating-point
computations, such as error compensations.

As such, computation deviation due to a subtraction can be formulated as
follows: for z = x 	 y, the error on z, ez, is equal to (xR − yR) − (xF 	 yF). As
ex = xR − xF and ey = yR − yF, we have

ez = ((xF + ex)− (yF + ey))− (xF 	 yF)

The deviation between the result on the reals and the result on the floats for a
subtraction can then be computed by the following formula:

ez = ex − ey + ((xF − yF)− (xF 	 yF))

In this formula, the last term, ((xF − yF) − (xF 	 yF)), characterizes the error
produced by the subtraction operation itself. Let e	 denotes this subtraction
operation error. The formula can then be simplified to:

ez = ex − ey + e	

The formula comprises two elements: firstly the combination of deviations from
input values and secondly, the deviation introduced by the elementary operation.

Addition : z = x⊕ y → ez = ex + ey + e⊕

Subtraction : z = x	 y → ez = ex − ey + e	

Multiplication : z = x⊗ y → ez = xFey + yFex + exey + e⊗

Division : z = x� y → ez =
yFex − xFey
yF(yF + ey)

+ e�

Fig. 1. Computation of deviation for basic operations

Figure 1 formulates computation deviations for all four basic operations.
For each of these formulae, the error computation combines deviations from
input values and the error introduced by the current operation. Notice that, for
multiplication and division, this deviation is proportional to input values.

All these formulae compute the difference between the expected result on the
reals and the actual one on the floats for a basic operation. Our constraint solver
over the errors on the floats relies on these formulae.
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4 Domain of errors

In a classical CSP, to each variable x is associated x its domain of values. It
denotes the set of possible values that this variable can take. When the variable
takes values in F, its domain of values is represented by an interval of floats:

xF = [xF, xF] = {xF ∈ F, xF ≤ xF ≤ xF}

where xF ∈ F and xF ∈ F.
Computation errors form a new dimension to consider. They require a specific

domain in view of the distinct nature of elements to represent, but also, due to the
possible values of errors which belong to the set of reals. Therefore, we introduce
a domain of errors, which is associated with each variable of a problem. Since all
arithmetic constraints processed here are reduced to the four basic operations,
and since those four operations are applied over floats, i.e. a finite subset of
rationals, this domain can be defined as an interval of rationals with bounds in
Q:

ex = [ex, ex] = {ex ∈ Q, ex ≤ ex ≤ ex}
where ex ∈ Q and ex ∈ Q.

Another domain of errors is required for the smooth running of our system:
it is the domain of errors on operations, denoted by e�, that appears in the
computation of the deviations (see Figure 1). Contrary to previous domains, it
is not attached to each variable of a problem but to each instance of an arithmetic
operation of a problem.

Like the domain of errors attached to a variable, it takes values in the set of
rationals. Thus, we have:

e� = [e�, e�] = {e� ∈ Q, e� ≤ e� ≤ e�}

where e� ∈ Q and e� ∈ Q.
This triple, composed of the domain of values, the domain of errors, and the

domain of errors on operations, is required to represent the set of phenomena
due firstly to possible values on variables and secondly, to different errors that
come into play in computation over floats.

5 Projection functions

The filtering process of our solver is based on classical projection functions to
reduce the domains of variables. Domains of values can be computed by pro-
jection functions defined in [11] and extended in [1] and [10] but new ones are
required for the domains of errors.

Those projections on the domains of errors are made through an extension
over intervals of formulae from Figure 1. Since these formulae are written over
reals, they can naturally be extended to intervals. For example, in the case of
the subtraction, we get the four projection functions below:
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ez ← ez ∩ (ex − ey + e	)

ex ← ex ∩ (ez + ey − e	)

ey ← ey ∩ (−ez + ex + e	)

e	 ← e	 ∩ (ez − ex + ey)

where ex, ey, and ez are the domains of errors of variables x, y, and z respectively
and e	 is the domain of errors on the subtraction.

Figure 2 gives projection functions for the three other arithmetic operations.
Note that the projection on yF for the division requires solving a quadratic
equation and requires the computation of a square root. Thanks to outward
roundings, correct computation of such a square root on rationals is obtained
using floating-point square root at the price of an over-approximation. Note also
that these projections handle the general case. For the sake of simplicity, special
cases like a division by zero are not exposed here.

Addition :

ez ← ez ∩ (ex + ey + e⊕)

ex ← ex ∩ (ez − ey − e⊕)

ey ← ey ∩ (ez − ex − e⊕)

e⊕ ← e⊕ ∩ (ez − ex − ey)

Multiplication :

ez ← ez ∩ (xFey + yFex + exey + e⊗)

ex ← ex ∩
(

ez − xFey − e⊗
yF + ey

)

ey ← ey ∩
(

ez − yFex − e⊗
xF + ex

)

e⊗ ← e⊗ ∩ (ez − xFey − yFex − exey)

xF ← xF ∩
(

ez − yFex − exey − e⊗
ey

)

yF ← yF ∩
(

ez − xFey − exey − e⊗
ex

)

Division :

ez ← ez ∩
(

yFex − xFey

yF(yF + ey)
+ e�

)

ex ← ex ∩
(

(ez − e�)(yF + ey) +
xFey

yF

)

ey ← ey ∩
(

ex − ezyF + e�yF
ez − e� + xF

yF

)

e� ← e� ∩
(

ez − yFex − xFey

yF(yF + ey)

)

xF ← xF ∩
(

(e� − ez)yF(yF + ey) + yFex

ey

)

yF ← yF ∩ [min(δ1, δ2),max(δ1, δ2)]

with

δ1 ← ex − (ez − e�)ey −
√

∆

2(ez − e�)

δ2 ← ex − (ez − e�)ey +
√

∆

2(ez − e�)

∆← [0,+∞) ∩ ((ez − e�)ey − ex)2

+ 4(ez − e�)eyxF

Fig. 2. Projection functions of arithmetic operation

Projection functions, on the domain of errors, support only arithmetic op-
erations and assignment, where the computation error from the expression is



A constraint system for round-off error analysis 7

transmitted to the assigned variable. Since the error is not involved in compari-
son operators, their projection functions only manage domains of values.

The set of those projection functions is used to reduce all variables’ domains
until a fixed point is reached. For the sake of efficiency, but also to get around
potential slow convergence, the fixed point computation is stopped when no
domain reduction is greater than 5%.

6 Links between the domain of values and the domain of
errors

In order to take advantage of domain reductions of one domain in another do-
main, clear and strong links must be established between the domain of values
and the domain of errors. What naturally occurs for domains of values thanks
to constraints on values requires more attention when it comes to the relations
between dual domains.

A first relation between the domain of values and the domain of errors on
operations is based upon the IEEE 754 norm, which guarantees that basic arith-
metic operations are correctly rounded. Since the four basic operations are cor-
rectly rounded to the nearest even float, we have

(x� y)− (x� y)− (x� y)−

2
≤ (x · y) ≤ (x� y) +

(x� y)+ − (x� y)

2

where x− and x+ denote respectively, the greatest floating-point number strictly
smaller than x and the smallest floating-point number strictly larger than x. In
other words, the result over floats is, at a half-ulp, the distance between two
successive floats from the result over reals. Thus, the error on an operation is
contained in this ulp:

− (x� y)− (x� y)−

2
≤ e� ≤ +

(x� y)+ − (x� y)

2

This equation sets a relation between the domain of values and the domain of
errors on operations: operation errors can never be greater than the greatest
half-ulp of the domain of values on the operation result. The projection function
for the domain of errors on operations is obtained by extending this formula to
intervals:

e� ← e� ∩
[
−min((z − z−), (z − z−))

2
,+

max((z+ − z), (z+ − z))
2

]

Finally, these links are refined by means of other well-known properties of
floating-point arithmetic like the Sterbenz property of the subtraction [16] or
the Hauser property on the addition [7]. Both properties give conditions under
which these operations produce exact results. As is the well-known property that
2k ∗ x is exactly computed provided that no overflow occurs.
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7 Constraints over errors

Usually, constraints available in a solver establish relations between variables of
a problem. The duality of domains available in our solver requires introducing
a distinction between the domain of values and the domain of errors. In order
to preserve the current semantic of expressions, variables keep on representing
possible values. A dedicated function, err(x), makes it possible to express con-
straints over errors. For example, abs(err(x)) ≥ ε, denote a constraint which
demands that the error on variable x be, in absolute value, greater or equal to ε.
It should be noted that since errors are taking their values in Q, the constraint
is over rationals.

When a constraint involves errors and variables, the latter, with domains
over floats, are promoted to rationals. Therefore, the constraint is converted to
a constraint over rationals.

8 Preliminary experiments

Projection functions and constraints over errors are being evaluated in a proto-
type based on Objective-CP [8], which already handles constraints over floats
thanks to the projection functions of FPCS [12]. All experiments are carried out
on a MacBook Pro i7 2,8GHz with 16GB of memory.

8.1 Predator prey

Predator prey [4] has been extracted from the FPBench test suite2:

double predatorPrey(double x) {

double r = 4.0;

double K = 1.11;

double z = (((r * x) * x) / (1.0 + ((x / K) * (x / K))));

return z;

}

When x ∈ [ 1
10 ,

3
10 ], Objective-CP using a simple and single filtering pro-

cess reduces the domain of z to [3.72770587e−02, 3.57101682e−01] and its error
domain to [−1.04160431e−16, 1.04160431e−16]. Fluctuat reduces the domain
of z to [3.72770601e−02, 3.44238968e−01] and its error to [−1.33729201e−16,
1.33729201e−16]. Thus, while Fluctuat provides better bounds for the domain
of values, Objective-CP provides better bounds for the domain of error. More-
over, our solver can use a search procedure to compute error values that are
reachable. For example, we can search for input values such that the error on z
will be strictly greater than zero.

With this constraint the solver output z = 3.354935286988540155128646e−01
with an error of 3.096612314293906301816432e−17.

2 See fpbench.org.
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Since rational numbers are used for computations of errors it is crucial to take
solving time into account. Table 1 shows times in seconds for the generation of
round-off error bounds on some benchmarks from FPBench. Solving time for
Objective-CP are correct, especially as a search procedure is done in addition of
filtering. Those times comfort us in the use of rational numbers for representing
errors.

Gappa Fluctuat Real2Float FPTaylor PRECiSA Objective-CP

carbonGas 0.152 0.025 0.815 1.209 3.830 0.060
verhulst 0.034 0.043 0.465 0.812 0.789 0.032
predPrey 0.052 0.031 0.735 0.916 0.477 0.050
turbine1 0.165 0.028 67.960 2.906 110.272 0.232

Table 1. Times in seconds for the generation of round-off error bounds. For Objective-
CP a searh is also used. (bold indicates the best approximation and italic indicates the
second best)

9 Conclusion

In this paper, we introduced a constraint solver capable of reasoning over compu-
tation errors on floating-point numbers. It is built over a system of dual domains,
the first one characterizing possible values that a variable of the problem can take
and the second one defining errors committed during computations. Moreover,
there are particular domains, bind to instances of arithmetic operations in nu-
merical expressions of the constraints, which represent errors in those operations.
Our solver, enhanced with projection functions and constraints over errors, offers
unique possibilities to reason on computation errors. Preliminary experiments
are promising and will naturally be reinforced with more benchmarks.

Such a solver might appear limited by the use of rational numbers and mul-
tiprecision integers. However, a thorough examination of the solver behavior has
shown that its main limit lies in its approximation of round-off errors. Firstly,
round-off errors are not uniformly distributed across input values. As a result,
finding input values that satisfy some error constraints has often to resort to an
enumeration of possible values. Secondly, round-off error of operations are over-
estimated. Such an overestimation does not perform the fine domain reductions
that would allow an efficient search. Therefore, a deeper understanding and a
tighter representation of the round-off error on an operation basis is a must to
actually improve the behavior of our solver.

Further work include extending support for a wider set of arithmetic func-
tions, improving the search to quickly find solutions in the presence of constraints
over errors and to add global optimization capabilities, for example, by using a
branch-and-bound method. Then, by formulating a problem as an optimization
problem, we should be in a position to determine for which input values the
error is maximal.

Another direction of improvement is the combination of CSP with other tools
dedicated to round-off error like abstract interpreter in an approach similar to
what has already been done for domains of values [14].
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framework for the round-off error analysis of floating-point programs. In: Verifica-
tion, Model Checking, and Abstract Interpretation - 19th International Conference,
VMCAI 2018, Los Angeles, CA, USA, January 7-9. pp. 516–537 (2018)

18. Zitoun, H., Michel, C., Rueher, M., Michel, L.: Search strategies for floating point
constraint systems. In: 23rd International Conference on Principles and Practice
of Constraint Programming, CP 2017. pp. 707–722 (2017)



Towards solving Essence, a proof of concept
using multi sets and sets

Saad Attieh and Christopher Jefferson

School of Computer Science, University of St Andrews, St Andrews, UK
{sa74,caj21}@st-andrews.ac.uk

Abstract. We propose a local search solver that operates on the high
level structures found in the Essence abstract constraint specification
language. High quality neighbourhoods are automatically derived from
the structured variable types such as set of partition, sequence of func-
tion. The solver we present, Athanor, is distinguished from other lo-
cal search solvers as it can operate directly on the high level types
in Essence without refining such types into low level representations.
This provides a major scalability advantage for problems with nested
structures such as set of set, since Athanor dynamically adds and
deletes constraints as the sizes of these structures vary during search.
The Essence language contains many abstract variable types. In this
paper, we present an implementation which supports multi sets and sets
as a proof of concept. We outline the framework required to perform
local search on Essence expressions, covering incremental evaluation,
dynamic unrolling and neighbourhood construction. The solver is bench-
marked against other constraint programming and local search solvers
with Sonet, a problem which makes use of the nested variable type multi
set of set. Future work will focus on broadening the range of types sup-
ported by Athanor.

1 Introduction

Constraint modelling languages, such as MiniZinc [16] or Essence [8,9,10] offer
to users a convenient means of expressing a constraint problem without con-
cerning themselves with the specific details of a particular constraint solver. We
focus herein on the Essence language, which is characterised by its support for
abstract type such as set, multiset, function and partition, and particularly by
its support for nesting of these types, such as set of multisets, or multiset of
functions. To illustrate, consider the Essence specification of the Synchronous
Optical Networking Problem (Sonet, problem 56 at www.csplib.org. See also
[11,22]) in Figure 1. An Essence specification identifies: the input parame-
ters of the problem class (given), whose values define an instance; the com-
binatorial objects to be found (find); the constraints the objects must satisfy
(such that); identifiers declared (letting); and an (optional) objective func-
tion (min/maximising). In this example, the single abstract decision variable
network is a multiset of sets, representing the rings on which communicating
nodes are installed.
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1 given nnodes, nrings, capacity : int(1..)
2 letting Nodes be domain int(1..nnodes)
3 $ connections that must be achieved between the nodes
4 given demand : set of set (size 2) of Nodes
5
6 find network :
7 mset (size nrings) of set (maxSize capacity) of Nodes
8
9 such that
10 $All connections between nodes are achieved
11 forAll pair in demand .
12 exists ring in network .
13 pair subsetEq ring
14
15 $ objective: minimise total number of connections to rings.
16 $ i.e. minimise sum of the size of each ring.
17 minimising sum ring in network . |ring|

Fig. 1: Essence specification of the Synchronous Optical Networking problem.
A set of rings is used to facilitate to communication between nodes. A node may
be installed onto multiple rings. The task is to ensure that all pairs of nodes that
require to communicate, given in demand, are able to do so while minimising
the total number of installations onto the rings.

The Conjure automated constraint modelling system [1,2,4,5] refines an
Essence specification into a solver-independent constraint model in the Essence
Prime modelling language [18], where the abstract decision variables are repre-
sented as constrained collections of primitive variables, such as integer or Boolean
variables. The Savile Row system [17,18,19] then transforms and prepares the
Essence Prime model for input to a particular constraint solver, such as Min-
ion [12], or SAT.

Refinement obscures the abstract structure apparent in the original Essence
specification, which is a particular problem for constructing neighbourhoods for
local search. In recent work [3], we presented a method for generating neigh-
bourhoods in Essence (i.e. pre-refinement) and then refining them along with
the problem specification. In this paper, we describe a proof-of-concept solver
Athanor that takes an alternative approach: operating directly on an Essence
specification, performing local search on the abstract variables. We motivate this
approach below.

1.1 Why operate directly on Essence specifications

There are several benefits to operating directly over the high level variables.
Firstly, with all the type information retained, Athanor is able to automat-
ically construct neighbourhoods that are useful for solving the problem. Such
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neighbourhoods would be hard to recover by analysing the model after it has
been refined for traditional CP or local search solvers. For example, by identi-
fying that a variable has the set type, Athanor can construct neighbourhoods
that add to the set, remove from the set or swap one value for another. However,
if a variable has the sequence type, neighbourhoods which take into account the
order of elements would be added, for example, reversing a contiguous subse-
quence of elements.

Another benefit is that the only constraints that Athanor must consider
are those that describe the problem and its objective. On the other hand, the
equivalent low level representations of the abstract variable types in Essence,
that is, representations which are accepted by traditional CP or local search
solvers, must be composed of only integer and boolean variables. This requires
that additional constraints be posted which maintain the chosen representation-
s/encodings of the abstract variables. For example, insuring that a collection of
integers form a valid partition. This is not necessary with a solver that under-
stands the higher level types and their properties that must be maintained.

Finally, there is a scalability advantage whereby the size of high level vari-
ables can vary during search. For example, given a set of items, during search,
the problem constraints must only be posted on the items in the set. As items
are added, new constraints can be posted dynamically and can be removed if
those items are deleted from the set. In comparison, if refined to a representation
composed of integers and booleans, sufficiently many variables and constraints
must be added to the model to handle the possibility of the set being its max-
imum size, even though this may be far larger than the size that optimises the
objective.

This paper presents the framework that has been constructed to support
solving Essence specifications directly. Though we make mention of several
Essence types, the framework currently supports sets and multi sets which can
be arbitrarily nested. The same methodology that is described in the following
sections will be applied to the rest of the Essence types in future work. Section 2
describes the implementation of an incremental evaluator for constraints. Sec-
tion 3 briefly discusses constraint violations and how they have been integrated
with high level structured types. Section 4 describes the method of dynamically
adding and removing constraints as items are added and removed from set vari-
ables. Section 5 outlines how neighbourhoods are automatically derived in the
context of the Sonet problem and closes with some benchmark results comparing
Athanor with other local search and CP solvers.

2 Incremental Evaluation

Athanor represents an Essence specification as a pair of abstract syntax trees
(ASTs), one representing the constraints in the specification, the other repre-
senting the objective function. The leaves (which represent the variables in the
problem) are assigned values during search. The solver incrementally updates
the AST to reflect changes to the set of variable assignments. Incremental eval-
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uation takes advantage of the fact that if a leaf of the tree (variable) is assigned
to a new value, only its ancestors 1 must be reevaluated.

At the start of search, Athanor begins by assigning a random value to each
of the variables followed by full evaluation of the AST. Afterwords, in order to
facilitate incremental evaluation, every node in the AST attaches a trigger to
each of its children, a call back which is invoked notifying the parent of changes
to the child nodes that might affect the value yielded by the parent. Every type
of node (integer returning, set returning, etc.) can trigger at least two types of
events.

– possibleValueChange(), notifying the parent that the value yielded by
the child may change. This allows the parent to record any properties of the
child before the child’s value is altered. This event must precede any change
to the child but it is legal for no change to actually take place.

– valueChanged(), notifying the parent that the value yielded by the child
has changed.

However, for higher level types such as set and multi set, simply indicating
that a value has changed can greatly hinder incremental evaluation since these
types are composed of many elements. Such an event gives no indication as to
how many of the elements in the set need reevaluating. Therefore, high level
types can make use of more descriptive events. For example, a set also has:

– valueAdded(),
– valueRemoved(),
– possibleMemberValueChange(),
– memberValueChange().

Of course, memberValueChange() can be formed by composing
valueRemoved() and valueAdded() but as shown in the next section, it
can be useful to consider these two events as one. Also note that a constraint
may choose to attach triggers to a set as a whole or trigger on the items within.

Figure 2 gives an example AST state during incremental evaluation, using
the expression describing the objective of the Sonet problem in Figure 1.

The process that takes place when adding the number 3 to the set ring2 is
as follows:

– ring2 triggers the event possibleValueChange() and this is echoed all
the way to the root.

– When sum receives the possibleValueChange() event, it caches the
value of the operand that triggered the event, size:v=1.

– The integer 3 is then added to ring2. Its value is now ring2:v={1,3},
– the event valueAdded() is sent to the parent.
– size updates its value to size:v=2, the event valueChanged() is sent

to its parent.
1 the nodes on the path from the leaf to the root
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1 sum ring in network .
2 |ring|

Fig. 2: Incremental evaluation. |x| means size of x

– sum updates its value by subtracting the old value size:v=1 and adds the
new value size:v=2. The old value was cached when the sum received the
possibleValueChange() event at the start.

– The node now has the value sum:v=4, the event valueChanged() is for-
warded to its parent...

3 Violation counts

In Figure 2 we showed how the values of integers and sets are incrementally
updated. A similar procedure is used for Boolean expressions, which have been
extended to store a violation count. A violation count is an integer, a heuristic
that gives an indication as to the magnitude of the change necessary to the set of
assignments in order that all constraints become satisfied. Methods of calculating
violations have been inspired fromvan Hentenryck and Michel [14]. For example,
given two integers x and y and the constraint c(x = y), the violation on c v(c) =
|x− y|. A violation count is also attributed to the variables under a constraint.
These variable violation counts are a heuristic used to give an indication as to
what extent each variable contributes towards the violating constraints. The
violation count on a variable u is the sum of violations attributed to u by the
constraints posted on u. This helps to guide the solver when selecting which
variables to modify when searching for a feasible solution. However, previous
work on violation counts have only made reference to variables with integer or
boolean types. We must examine how to extend the method to variables with
nested types. Consider the example shown in Figure 3 in which a constraint is
posted on to the integers contained within a set.

1 find s : set of int...
2 such that forAll i in s . c(i)

Fig. 3: Constraint on a nested type, c(i) is some arbitrary constraint on i
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We must consider how violations are attributed when elements ins violate
the constraint c. As mentioned, the violation counts on variables are supposed
to guide the solver towards identifying the cause of violating constraints. Hence,
the rules for attributing violations to nested types is as follows:

– When a violation is attributed to an element i of a structure s such as a set
or sequence, the same violation is added to s and successively the structure
that contains s and so on to the most outer structure.

– However, if i is itself a containing structure, the violation is not attributed
to any of the elements in i. Neither is the violation propagated to any of the
siblings of i, that is, other elements contained in s.

– Hence, the violation on any containing structure s is the sum of violations
attributed to s plus the sum of violations attributed to the elements in s.

Consider the constraint |s| = 1 (the size of s is 1). If this constraint is violated,
all the elements in s are all equally to blame. Therefore, there bares no benefit
in attributing any violations to the elements in s, only s as a whole is assigned a
violation. However, if the constraint is like that shown in Figure 3, it makes sense
to assign a violation to only those elements in s that are causing the violation,
so that the solver may be biased towards altering their value. s itself inherits the
violation of its elements so that it may be distinguished from other variables; it
is natural to consider a set with two violating elements to have a larger violation
than a set with one violating element.

4 Dynamic unrolling of quantifiers

Although an Essence specification has a fixed number of abstract variables,
these variables are usually of container types (set, sequence, multi set, and so
on). The values of such variables can vary considerably in size and hence new
elements can be introduced or deleted during search. Essence also allows the
quantification over such containers attaching a constraint to each of the elements
within. Therefore, it must be possible to add and delete constraints in accordance
with the changes in size of the values of the variables being quantified over.

1 find s : set of int(1..5)
2 such that
3 forAll i in s. i % 2 = 0

Fig. 4: Quantifying over a set

Consider Figure 4, for example. In the AST representation, s is an operand
of the forAll node. The forAll node also has one operand for each item in
s. The forAll node also stores the expression (i%2=0) that is to be applied
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to each element in the set. This expression is a template, meaning that it is
represented by an incomplete AST. The AST is incomplete as i in the expres-
sion does not refer to one variable instance. Rather, it is used to refer to each
value in the set. We call this the iterator. When s changes from being empty to
having one element, an operand is added to the forAll node, the expression
template is copied in and made complete by assigning the iterator to the newly
added element. The AST subtree representing the copied expression is than fully
evaluated much like the evaluation of the entire AST at the start of search. The
nodes in the subtree then begin triggering on their children just as described in
Section 2.

However, as more elements are added, rather than copying the unevaluated
expression template, the expression subtree most recently added to the forAll
node is copied. This is because the expression would have already been evalu-
ated. It is only necessary to assign the iterator to point to a new element and a
valueChanged() event passed up the subtree. As might be expected, as ele-
ments are deleted from the set, their corresponding subtrees are also removed.

5 Experiments with the sonet problem

As mentioned previously, the strength of operating directly on Essence types is
that the Essence type constructors can convey information on the structure of
the problem being solved. Referring to the Sonet problem presented in Figure 1,
notice that we only have one abstract variable.

1 find network :
2 mset (size nrings) of set (maxSize capacity) of Nodes

The size attribute on the most outer type (multi set) forces the multi set to
have a fixed size. This allows Athanor to drop all neighbourhoods that would
attempt to change the size of the multi set. It therefore generates neighbourhoods
that manipulate its elements. Since the inner type is a set of variable size, the
neighbourhoods setAdd, setRemove are added. Along with this are setSwap,
exchange one element in a set for another and setAssignRandom, assign the
entire set to a new value. The setSwap and setRemove neighbourhoods are
biased towards changing the sets that are most violating and furthermore, se-
lecting the most violating elements within the set.

A simple search strategy is built upon these neighbourhoods. The solver
runs in a loop: for each iteration, a random neighbourhood is executed and
the change to the total constraint violation and objective are examined. If the
violation count is decreased or if the objective is improved, the new solution
is accepted. Otherwise, the change is reversed. This means that until the set
of assignments form a feasible solution, the solver will accept any change to
the objective (better or worse) provided that the set of assignments is brought
closer to a feasible solution. As mentioned previously, the distance from a feasible
solution is a heuristic. It is the total constraint violation count.
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Once a feasible solution is found (the violation count reaches 0), the solver
may only make progress by making changes that do not worsen the objective. If
after a number of iterations 2 no improvement is observed, the solver relaxes the
restriction on the violation count; accepting solutions if they improve the objec-
tive and allowing some constraints to be violated. In general, this procedure can
be considered as being similar to hill climbing search procedures commonly found
in local search solvers. Future work would focus on extending the set of search
strategies to include other popular methods such as Simulated Annealing [15] or
Tabu Search [13].

We performed experiments on a range of Sonet instances, comparing the per-
formance of Athanor against other local search solvers that also automatically
derive neighbourhoods. These were two variants of large neighbourhood search
(LNS), propagation guided [20] and explanation guided [21], implemented with
the Choco 4.0.6 solver as well as OscaR/CBLS [7,23] which derives neighbour-
hoods from constraints. The input to Oscar-CBLS was produced by using Con-
jure and Savile Row to refine the models to MiniZinc [16] and the MiniZinc
instances were subsequently specialised for Oscar-CBLS’s Minizinc backend [6]
using MiniZinc 2.1.7. Care was taken to match the Choco and OscaR models as
closely as possible.

Our results are summarised in table 1, the objective achieved after ten sec-
onds and after ten minutes is shown, these values are the median of 10 runs.
As can be seen, our solver always achieves the best performance both after ten
seconds and after ten minutes.

Table 1: Minimising objective, after 10 seconds and 600 seconds. Best results for
each time period are given in bold.

instance Athanor lns-eb lns-pg oscar
10s 600s 10s 600s 10s 600s 10s 600s

sonet1 66.5 62.5 72.5 65.0 85.0 72.5 75.5 72.5
sonet2 182.5 117.0 216.5 143.5 281.0 123.5 546.0 157.5
sonet3 115.5 91.5 132.5 104.5 153.0 101.0 256.5 121.5
sonet4 184.0 132.0 234.0 148.5 283.5 133.5 531.5 167.0
sonet5 258.5 166.5 394.5 199.0 474.5 176.0 843.0 227.5
sonet6 294.0 178.0 391.5 227.0 490.0 188.0 829.5 259.5
sonet7 370.5 212.0 534.0 285.5 956.0 253.5 1152.5 319.0
sonet8 355.5 197.0 704.5 261.5 1236.5 236.0 1379.0 295.0

2 this is a tunable parameter to the solver
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6 Conclusion

We have presented the benefits for having a solver operate directly on the ab-
stract variables present in an Essence specification. The solver is able to utilise
the type system to construct more intelligent neighbourhoods and is able to
model the abstract types directly without having to resort to possibly expensive
encodings. We have shown a framework for incremental evaluation of Essence
ASTs as the abstract variables are manipulated during search. This includes the
dynamic unrolling of quantifiers as variables are introduced during search. A
brief discussion of how violations are typically calculated for boolean constraints
is presented and how this has been extended to support variables with arbi-
trarily nested types. Finally, we benchmark a proof of concept solver, operating
on the Sonet problem which uses the Essence types multi set and set. The
solver outperforms other local search solvers (LNS and oscar-CBLS) who derive
neighbourhoods from lower level encodings.
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Abstract. Frequent itemset mining (FIM) is a method for finding reg-
ularities in transaction databases. It has several application areas, such
as market basket analysis, genome analysis, and drug design. Finding
frequent itemsets allows further analysis to focus on a small subset of
the data. For large datasets the number of frequent itemsets can also
be very large, defeating their purpose. Therefore, several extensions to
FIM have been proposed in the literature, such as adding high-utility
(or low-cost) constraints and only finding maximal frequent itemsets. In
this paper we present a constraint programming based approach that
combines arbitrary side constraints with maximal frequent itemset min-
ing. We compare our approach with state-of-the-art algorithms via the
MiningZinc system (where possible) and show significant contributions
in terms of performance and applicability.

Keywords: Data mining · Pattern mining · Frequent itemset mining ·
Maximal frequent itemset mining · Constraint Modelling

1 Introduction

Frequent itemset mining (FIM) is a method for finding regularities in transaction
databases. It has numerous application areas, such as market basket analysis,
genome analysis, and drug design [1,17]. Finding frequent itemsets allows further
analysis and human inspection to focus on a small subset of the data[10].

FIM is performed on transaction databases, where each transaction is a set
of items. For a subset of items S, we define support(S) to represent the num-
ber of transactions that have S as a subset. A frequent itemset is any S with
support(S) ≥ t, where t is the threshold of frequency. This threshold is often
given as a percentage of the total number of transactions in the dataset.

The number of transactions and the number of items in a single transaction
may vary greatly between application domains. For example, among the sixteen
datasets listed on the CP4IM website1 and hosted on the UCI Machine Learning
Repository[8], the number of transactions range between 101 and 8124, and the
number of items ranges between 27 and 287.

Lymphography [22] is a medium size dataset with 148 transactions and 68
items. Despite its relatively small size, there are nearly ten million frequent

1 https://dtai.cs.kuleuven.be/CP4IM/datasets/
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1 language Essence 1.3

2 letting ITEM be domain int(...)

3 given db : mset of set of ITEM

4 given min_support : int

5 given current_size : int

6 given solutions_so_far : set of (set of ITEM)

7 find fis : (set (size current_size) of ITEM)

8 such that

9 (sum entry in db . toInt(fis subsetEq entry)) >= min_support,

10 C(fis),

11 forAll sol in solutions_so_far .

12 !(fis subset sol)

Fig. 1. Essence specification for Maximal and Constrained Frequent Itemset Mining.

itemsets in this dataset (with t = 10%). Extensions to FIM were proposed to
reduce the number of frequent itemsets and to produce more focused results.
There are broadly two categories of these extensions in the literature:

1. application-specific side constraints on the frequent itemsets
2. constraints between solutions, such as maximality or closedness.

The combination of these two kinds of constraints was explored in [6], where the
employed algorithm needs to be carefully configured depending on the properties
of the side constraints. In this paper, we present a constraint programming based
declarative approach that works with arbitrary side constraints completely auto-
matically. We focus on maximal frequent itemset mining since it is a significantly
more difficult problem to solve. Our approach can be applied to closed frequent
itemset mining with minor modifications.

Figure 1 presents an Essence [11,13,12] specification for maximal and fre-
quent itemset mining, which we will use throughout this paper. Essence is a
constraint specification language whose key feature is support for abstract deci-
sion variables, such as multisets, sets, functions, and relations, as well as nested
types, such as multisets of relations, or the set of tuples present in the fig-
ure. Essence specifications are solved via a toolchain comprising the Conjure
[3,4,5] and Savile Row [18] automated constraint modelling tools. Savile Row
has multiple backends to accommodate solutions via constraint or SAT solvers.
We used these backends and generated Minion and SAT models to solve. Our
initial experiments show that generated SAT model on SAT solvers give better
performance. Therefore, we employ the SAT solver nbc minisat all[20] in
our experiments.

Contributions. In this paper we give a high-level declarative problem spec-
ification in Essence for the maximal frequent itemset mining problem and a
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method that supports non-monotonic side constraints. Our method is completely
declarative and automated, it does not require the user to make any decisions
about which mining algorithm to employ. We present an exhaustive empirical
study where we compare our method to several execution plans offered by Min-
ingZinc [7,15]. We also construct non-trivial instances for the high-utility and
low-cost maximal itemset mining problems at varying levels of frequency thresh-
olds.

2 Extensions to Frequent Itemset Mining

Plain frequent itemset mining is concerned only with finding subsets of items
that occur together in a transaction database. There are typically a large number
of frequent itemsets and algorithms like Apriori, LCM and Eclat provide very
efficient ways of enumerating them. For example, for the small dataset in Figure 2
with four items (in I) and three transactions (in T), there are ten frequent
itemsets if the minimum support is 2.

Side constraints are often added to an itemset mining problem to provide
focus on some itemsets. Some of these constraints are simple by enforcing or
forbidding certain itemsets or putting lower/upper bounds on the cardinality
of itemsets, etc. Constraints like these have been incorporated into existing fre-
quent itemset solvers in the past. For example, LCMv2 [21] does not support
itemset cardinality constraints, however a later version (LCMv5) added support
for them. Adding support for new side constraints inside a dedicated itemset
solver requires non-trivial reasoning in terms of its integration to the existing
algorithm.

Constraints among solutions. Another class of extensions to frequent
itemset mining is in the form of constraints among solutions. Maximality is a
well-known constraint in this class[14]. A frequent itemset is maximal only if
none of its supersets are frequent. This condition intuitively follows from the
observation that if an itemset is frequent all of its subsets will also be frequent,
and hence including them in the result set does not add value. In our running
example with min support 2, the maximal itemsets are {{3, 4}, {1, 2, 4}}.

Maximal and constrained itemset mining. Combining problem specific
side constraints with constraints between solutions is appealing since this com-
bination would provide the benefits of both classes of extensions. There is some
ambiguity about what this combination might mean and this was one of the
motivations of the method we develop here.

I = {1, 2, 3, 4}
T = {{1, 2, 4}, {1, 2, 3, 4}, {3, 4}}

FIS = {{}, {1}, {2}, {3}, {4}, {1, 2}, {1, 4}, {2, 4}, {3, 4}, {1, 2, 4}}

Fig. 2. A small database of transactions
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There are two possible definitions for the combined problem: (1) all maximal
frequent itemsets that also satisfy the side constraint (2) all frequent itemsets
that satisfy the side constraint and are maximal within this solution set.

The former is strictly less useful since when we remove a maximal frequent
itemset from the solution set due to the side constraint, we might also remove
several of its subsets which are actually support the side constraint and doesn’t
have any supersets which does the same. We demonstrate the difference between
the two definitions in Figure 3 using our running example with a minimum
support value of 2, and a minimum cost threshold of 3. Starting from the same
database, the two methods reach different sets of solutions. In the first table, the
problem arises from removing the set {1, 2, 4} and consequently losing all of its
subsets from the solution set. This produces an incomplete set of solutions.

(Step 1)
Database

(Step 2)
Maximal Itemsets

(Step 3)
Maximal and

Low-Cost

{{1, 2, 4},
{1, 2, 3, 4},
{3, 4}}

{{3, 4}, {1, 2, 4}} {{3, 4}}

(Step 1)
Database

(Step 2)
Frequent Itemsets

(Step 3)
Low-Cost

(Step 4)
Low-Cost and

Maximal

{{1, 2, 4},
{1, 2, 3, 4},
{3, 4}}

{{}, {1}, {2}, {3},
{4}, {1, 2}, {1, 4},
{2, 4}, {3, 4},
{1, 2, 4}}

{{}, {1}, {2}, {3},
{4}, {1, 2}, {1, 4},
{2, 4}, {3, 4}}

{{1, 2}, {1, 4},
{2, 4}, {3, 4}}

Fig. 3. The difference between the order of application of side constraints and the
maximality constraint.

This problem only occurs when the side constraint is non-monotonic, as ex-
plained in [6]. A side constraint C is monotone when for any two frequent itemsets
a and b with a ⊂ b, C(a) =⇒ C(b). The two side constraints that we consider
in this paper are high-utility (monotone) and low-cost (not monotone).

The combination of these two kinds of constraints was explored in [6], where
the employed algorithm needs to be carefully configured depending on proper-
ties of the side constraints. Hence, using a frequent itemset mining algorithm like
LCM or Eclat to find all maximal frequent itemsets followed by a post process
to filter those that don’t satisfy the side constraint will lose solutions. In addi-
tion to MiningZinc and specialised algorithms, there are two recent studies [16]
and [19] which propose global constraints for the closure constraint. However,
these papers also propagate for the constraint between solutions first to lose
some information by applying side constraints on post-processing.
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In this paper, we present a constraint programming based declarative ap-
proach that works with non-monotonic side constraints completely automati-
cally.

3 Maximal FIM with non-monotonic side constraints

Our approach to maximal itemset mining (with or without side constraints) is
iterative. We first find frequent itemsets of the largest cardinality possible, that
of the largest transaction. For the largest cardinality, all frequent itemsets are
guaranteed to be also maximal frequent itemsets, since they have no frequent
supersets that can rule them outside of the maximal set. We then iteratively
decrement the cardinality by one and solve for all frequent itemsets. At each
iteration we also produce an exclusion constraint (Lines 11–12 of Figure 1), which
ensures that all solutions found at a certain iteration are maximal with respect
to solutions found at previous iterations. This approach is sound, i.e. we do not
produce any frequent itemsets that are not maximal, since the maximal property
of an itemset only depends on larger frequent itemsets. The approach is also
complete since we enumerate all solutions for every possible itemset cardinality.

Algorithm 1 Iterative Maximal and Constraint Itemset Mining with CP

1: procedure IterativeMiner(D)
2: solutions so far ← {}
3: size← ub
4: while size ≥ 0 do
5: solutions← Solve(D, solutions so far, size)
6: solutions so far ← solutions so far ∪ solutions
7: size← size− 1
8: end while
9: return solutions so far

10: end procedure

For a given problem class Conjure is called once to refine the Essence
specification in Figure 1 into a constraint model in Essence Prime. Conjure
produces an Occurrence model [2] for the set variable, which uses an array of
Boolean decision variables for each item. SavileRow employs the Minion con-
straint solver as a preprocessing step that achieves singleton arc consistency on
the lower and upper bounds of decision variables. This step has the potential to
reduce the number of iterations considerably by reducing the range of itemset
cardinalities that need to be considered. Thereafter, each iteration is performed
as described in Algorithm 1.

For the upper bound ub, we use the cardinality of the largest maximal fre-
quent itemset as our starting point if it is obvious. Otherwise, we start from the
cardinality of the widest transaction in the database.
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Inside the Solve procedure (Line 6) SavileRow translates the model into
SAT. We selected a SAT solver due to the large number of Boolean variables in
the model and the relatively simple constraints. We use nbc minisat all [20],
which is an AllSAT solver based on MiniSAT [9]. SavileRow runs the solver
at each level, collects the results, and modifies the SAT encoding by adding new
exclusion constraints.

1 given cost_values : matrix indexed by [ITEM] of int(0..5)

2 given max_cost : int

3 given utility_values : matrix indexed by [ITEM] of int(0..5)

4 given min_utility : int

5 such that

6 (sum item in fis . cost_values[item]) <= max_cost

7 (sum item in fis . utility_values[item]) >= min_cost

Fig. 4. Essence specification for High Utility and Low-Cost constraint.

4 Empirical evaluation

Our experiment uses a low-cost constraint in addition to the high-utility con-
straint to have a non-monotonic constrained model in the end. The low-cost
constraint can be written in the MiningZinc language in a similar way to the
high-utility constraint in the model of Figure 8 of [15]. MiningZinc produces a
number of execution plans when provided with this model. However, all of these
execution plans produce faulty answers. The low-cost constraint is not mono-
tonic, so the MiningZinc execution plans suffer from the problem we describe in
Section 2.

Experiments were performed with 16 processes in parallel on a 32-core AMD
Opteron 6272 at 2.1 GHz with 256 GB RAM. We modified the MiningZinc source
code to use a different temporary directory for each of its invocation. By default
MiningZinc uses a fixed directory for its temporary files, which precludes us from
running multiple MiningZinc processes at the same time.

All of these execution plans either calculate maximal itemsets first and then
apply side constraints, or contain the maximality constraint inside a constraint
model and apply it simultaneously with the side constraints.

For sixteen datasets and five different frequency levels we construct 80 in-
stances. With a 3-hour time limit, We also run all execution plans produced by
MiningZinc, and 12 plans out of 18 produce an incorrect number of solutions
for at least one instance even without maximality constraint for the reasons are
unknown to us. We exclude these execution plans from our comparison.
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4.1 Maximal High-Utility and Low-Cost Itemset Mining

Table 1 gives the runtimes of several MiningZinc execution plans and our method
(Essence Mining). In square brackets we indicate the Gecode option used in
a given execution plan generated by MiningZinc, where F represents a model
rewriting called freq items, and R represents another called reify. FI indi-
cates a preprocessing step called FreqItems that runs before Gecode.

The Essence Mining column contains time taken by our method, includ-
ing modelling overhead. We compare this runtime against the runtimes of the
MiningZinc execution plans and indicate the winner using a bold font. In ad-
dition, we provide the time taken by only the AllSAT solver for our method in
the Essence Mining (Solver Time) column. In general, the modelling overhead is
small. However in some cases (for example in the audiology dataset) there is a
significant difference between the total time and the solver time. On the harder
instances of the hypothyroid dataset our method is the only one that finishes
before the time limit.

We experiment with a combined high-utility and low-cost itemset mining
problem using the frequency thresholds (10%, 20%, 30%, 40% and 50%). The
cost/utility values are uniformly randomly chosen to a value between 0 and 5. A
cost threshold and a utility threshold is chosen to limit the number of maximal
frequent itemsets to at most tens of thousands of maximal frequent itemsets.
These thresholds are chosen independently of the frequency value. We add four
more parameters and arithmetic constraints as listed in Figure 4.

We extended the MiningZinc model (from Figure 8 of [15]). Due to the issue
that was explained in Section 2 the extended model gives fewer results: it misses
a large number of solutions. Hence, comparing our performance to this model is
not sensible.

Following the analysis of [6] we decided to relax the maximality condition
for MiningZinc and find all frequent itemsets that satisfy the side constraints.
In other words, we use MiningZinc to perform the first three steps in the second
table of Figure 3. To achieve the same results as our method another procedure
would also be needed. We verified the output of MiningZinc experiments by
expanding our maximal frequent itemsets to full frequent itemsets.

5 Conclusion
In this paper we have presented a high-level declarative problem specification
in Essence for the maximal frequent itemset mining problem and a method
that supports non-monotonic side constraints. Our method is completely declar-
ative and automated, it does not require the user to make any decisions about
which mining algorithm to employ. To the best of our knowledge this is the first
declarative method of performing the maximal frequent itemset mining task with
arbitrary side constraints (whether they are monotone or not).

We tested our method against all execution plans offered by MiningZinc for
two different kinds of side constraints: high utility and low cost. Combining both
of these constraints is not monotonic and our approach proves to be very effective
in handling it.
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Instance Gecode
Gecode

[F]
Gecode

[FR]
Gecode

[R]

FI +
Gecode

[F]

FI +
Gecode

[FR]

Essence
Mining

Essence
Mining
(Solver
Time)

Number
of

Solutions

lymph-50 15 5 10 10 5 9 13 0 477
lymph-40 33 8 23 23 9 20 15 0 351
lymph-30 103 29 93 91 32 80 15 2 485
lymph-20 194 60 202 203 64 188 19 4 865
lymph-10 920 526 987 1,263 447 1,002 1,088 24 3,590

krvskp-50 * 3,896 282 281 3,911 274 517 441 136
krvskp-40 * 6,774 794 792 6,901 761 1,121 1,029 287
krvskp-30 * * 3,057 3,057 * 2,971 4,652 2,278 885
krvskp-20 * * * * * * 9,414 5,344 4,057
krvskp-10 * * * * * * * * *

hypo-50 * * * * * * 4,424 1,792 2,823
hypo-40 * * * * * * 1,481 1,251 254
hypo-30 * * * * * * 4,374 1,921 415
hypo-20 * * * * * * 6,154 2,860 7
hypo-10 * * * * * * 5,726 2,325 90

hepatisis-50 15 9 15 15 9 15 16 3 1,351
hepatisis-40 67 37 72 73 39 68 30 11 3,919
hepatisis-30 322 195 256 254 200 237 51 27 5,866
hepatisis-20 1,862 1,402 1,192 1,191 1,452 1,119 88 61 7,344
hepatisis-10 10,368 8,614 3,283 3,356 9,457 2,962 209 165 8,969

heart-50 55 16 18 17 16 16 27 9 353
heart-40 254 107 122 120 110 113 69 45 1,915
heart-30 1,469 760 521 516 774 485 269 241 3,390
heart-20 * 8,219 7,561 7,585 8,082 6,564 2,089 1,350 21,941
heart-10 * * * * * * 4,178 1,844 7,812

german-50 98 36 23 23 35 23 59 28 146
german-40 354 136 127 128 140 120 107 70 655
german-30 1,479 662 893 883 671 844 286 238 2,466
german-20 7,049 3,532 6,371 6,369 3,618 5,683 889 806 9,680
german-10 * * 6,780 7,288 * 6,485 5,344 2,192 2,198

australian-50 479 200 182 177 204 177 140 108 1,040
australian-40 2,860 1,688 1,182 1,174 1,764 1,094 404 365 2,253
australian-30 * * 10,672 10,647 * 10,272 3,049 1,833 7,228
australian-20 * * * * * * 8,634 5,365 10,722
australian-10 * * * * * * * * *

audiology-50 * * 1,123 1,115 * 1,025 62 9 2,052
audiology-40 * * 436 433 * 370 59 5 2,235
audiology-30 * 4,688 423 417 4,751 349 56 5 1,217
audiology-20 * * 1,940 1,950 * 1,647 34 6 1,021
audiology-10 * * 5,081 5,113 * 4,591 38 9 1,098

anneal-50 * * * * * * 105 69 1,598
anneal-40 * * * * * * 188 147 2,792
anneal-30 * * * * * * 155 130 2,069
anneal-20 * * * * * * 303 275 2,483
anneal-10 * * * * * * 452 421 3,430

Table 1. Maximal High-Utility and Low-Cost Itemset Mining on 9 datasets.
Times are in seconds (* indicates a 3-hour timeout).
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Abstract. In itemset mining, the notion of generator is present in sev-
eral tasks such as mining frequent itemsets, association rules, etc. It has
recently been shown that constraint programming is a flexible way to
tackle data mining tasks. In this paper we propose a global constraint
Generator for mining generator itemsets. We provide a polynomial
complete propagator for Generator proving that it achieves domain
consistency.

1 Introduction

In itemset mining, generator itemsets are used to capture the minimality prop-
erty. An itemset is a generator if there does not exists any subset with the same
frequency. Generator itemset were first introduced in [1] for efficiently mining
frequent itemsets. In [7] frequent generators are used for mining the minimal
non-redundant association rules. For efficiently mining minimal rare itemsets in
[8] the notion of generator is used.

In a recent line of work [2–4, 6], constraint programming (CP) has been used
as a declarative way to solve some data mining tasks, such as itemset mining or
sequence mining. Such an approach can not yet compete the state of the art data
mining algorithms in terms of CPU time for standard data mining queries but
the CP approach is competitive as soon as we need to add user’s constraints. In
addition, adding constraints is easily done by specifying the constraints directly
in the model without the need to revise the solving process.

In this paper we propose a new global constraint, called Generator, for
mining itemsets that are generators. We propose a polynomial filtering algorithm
for Generator. We prove that this algorithm achieves domain consistency.
The paper is organized as follows. Section 2 gives some background material.
In section 3 we present our new global constraint Generator. We conclude in
section 4.

2 Background

2.1 Itemsets

Let I = {1, . . . , n} be a set of n item indices and T = {1, . . . ,m} a set of
m transaction indices. An itemset P is a subset of I. D is the transactional
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Table 1: Transaction dataset example with six items and five transactions.

trans. Items

t1 A B
t2 A C D E
t3 B C D F
t4 A B C D
t5 A B C F

dataset, where, D ⊆ I × T . The cover of an itemset P , denoted by cover(P ), is
the set of transactions containing P . The (relative) frequency of an itemset P is

freq(P ) = |cover(P )|
|T | .

Definition 1 (Generator [1]) A generator is an itemset P such that there
does not exist any itemset Q ( P such that freq(Q) = freq(P ).

Example 1. Consider the transaction dataset presented in Table 1. The itemset
AC is a generator because freq(AC) = 60% and none of its subsets (∅, A, C)
have the same frequency (freq(∅) = 100%, freq(A) = freq(C) = 80%). The
itemset CD is not a generator because it has the same frequency as one of its
subsets: freq(CD) = freq(D) = 60%.

2.2 Constraint Programming

A constraint programming model specifies a set of variables X = {x1, . . . , xn},
a set of domains dom = {dom(x1), . . . , dom(xn)}, where dom(xi) is the finite
set of possible values for xi, and a set of constraints C on X. A constraint cj ∈ C
is a relation that specifies the allowed combinations of values for its variables
var(cj). An assignment on a set Y ⊆ X of variables is a mapping from variables
in Y to values, and a valid assignment is an assignment where all values belong
to the domain of their variable. A solution is an assignment on X satisfying
all constraints. The constraint satisfaction problem (CSP) consists in deciding
whether an instance of a CP model has solutions (or in finding a solution). Con-
straint programming is the art of writing problems as CP models and solving
them by finding solutions. Constraint solvers typically use backtracking search to
explore the search space of partial assignments. At each assignment, constraint
propagation algorithms prune the search space by enforcing local consistency
properties such as domain consistency.
Domain Consistency (DC). A constraint c on X(c) is domain consistent,
if and only if, for every xi ∈ X(c) and every dj ∈ dom(xi), there is a valid
assignment satisfying c such that xi = dj .
Global constraints are constraints defined by a relation on any number of
variables. These constraints allow the solver to better capture the structure of
the problem. Examples of global constraints are AllDifferent, Regular, Among,
etc. (see [5]). Some global constraints (such as Regular) allow a decomposition



A Global Constraint for Mining Generator Itemsets 3

preserving DC. For the other global constraints, it is not possible to efficiently
propagate them by generic DC algorithms because these algorithms are expo-
nential in the number of variables of the constraint. Fortunately, for many global
constraints (such as Alldifferent), dedicated propagation algorithms can be de-
signed to achieve DC in time polynomial in the size of the input, that is, the
domains and the required extra parameters.

3 The Global Constraint Generator

In this section we introduce Generator a new global constraint for mining
itemsets that are generators (see Definition 1).

We introduce a vector x of n Boolean variables, where xi represents the
presence of item i in the itemset. In the rest of the paper we will use the following
notations:

– x−1(1) = {i ∈ I | xi = 1}
– x−1(0) = {i ∈ I | xi = 0}

Definition 2 (Generator constraint) Let x be a vector of Boolean variables
and D be a dataset. The global constraint GeneratorD(x) holds if and only if
x−1(1) is a generator.

The propagator we propose for the Generator constraint is based on the
following property of generators.

Proposition 1 Given two itemsets P and Q, if P is not a generator and P ( Q,
then Q is not a generator.

Proof. Derived from Theorem 2 in [1], where we set frequency to 0. ut
Algorithm. The propagator Filter-Generator for the global constraint

Generator is presented in Algorithm 1. Filter-Generator takes as input the
variables x. Filter-Generator starts by computing the cover of the itemset
x−1(1) and stores it in cover (line 3). Then, for each item j ∈ x−1(1), Filter-
Generator computes the cover of the subset x−1(1)\{j}, and stores it in cov[j]
(lines 4-5). Filter-Generator can then remove items i that cannot belong to
a generator containing x−1(1). To do that, for every item j in x−1(1) ∪ {i},
we compare the cover of x−1(1) ∪ {i} (i.e., cover ∩ cover(i)) to the cover of
x−1(1) ∪ {i} \ {j} (i.e., cov[j] ∩ cover(i)) (line 8). If they have equal size (i.e.,
same frequency), we remove i from the possible items, that is, we remove 1 from
dom(xi) and break the loop (line 9).

Theorem 1. The propagator Filter-GeneratorD enforces domain consis-
tency.

Proof. We first prove that the value 0 for a variable xi such that i 6∈ (x−1(1) ∪
x−1(0)) always belongs to a solution of the constraint Generator, and so can-
not be pruned by domain consistency. Suppose i 6∈ x−1(1)∪ x−1(0). If x−1(1) is
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Algorithm 1: Filter-GeneratorD (x)

1 InOut: x = {x1 . . . xn}: Boolean item variables;

2 begin
3 cover← cover(x−1(1));
4 foreach j ∈ x−1(1) do
5 cov[j]← cover(x−1(1) \ {j});
6 foreach i 6∈ x−1(1) ∪ x−1(0) do
7 foreach j ∈ x−1(1) ∪ {i} do
8 if |cover ∩ cover(i)| = |cov[j] ∩ cover(i)| then
9 dom(xi)← dom(xi) \ {1}; break;

a generator, removing the value 0 from dom(xi) increases x−1(1) to x−1(1)∪{i},
and then x−1(1) cannot be returned as a generator, which contradicts the hy-
pothesis. Suppose now that x−1(1) is not a generator. We know from Proposi-
tion 1 that for any Q ) x−1(1), Q is not a generator. Thus, x−1(1)∪ {i} cannot
belong to any generator, and value 0 cannot be pruned from dom(xi).

We now prove that Filter-Generator prunes value 1 from dom(xi) exactly
when i cannot belong to a generator containing x−1(1). Suppose value 1 of xi

is pruned by Filter-Generator. This means that the test in line 8 was true,
that is, there exists a sub-itemset of x−1(1) ∪ {i} with the same frequency as
x−1(1)∪{i}. Thus, by definition, x−1(1)∪{i} does not belong to any generator.
Suppose now that value 1 of xi is not pruned. From line 8, we deduce that there
does not exist any subset of x−1(1)∪{i} with the same frequency as x−1(1)∪{i}.
Thus x−1(1) ∪ {i} is a generator and value 1 of xi is domain consistent. ut

Theorem 2. Given a transaction dataset D of n items and m transactions, the
algorithm Filter-GeneratorD has an O(n2 ×m) time complexity.

Proof. Computing the size of the cover of an itemset is in O(n ×m). Line 5 is
called at most n times, leading to a time complexity of O(n2 ×m). The test at
line 8 is done at most n2 times. The covers of x−1(1)∪{i} and x−1(1)∪{i}\{j}
at line 8 are computed in O(m) thanks to the cover and cov data structures.
Thus, the time complexity of lines 6-9 is bounded above by O(n2 × m). As a
result, Filter-Generator has an O(n2 ×m) time complexity. ut

Note that without the use of the cov structure (that is, by recomputing
cover(x−1(1) \ {j}) at each execution of the loop at line 6), the time complexity
becomes O(n3×m). However, this version is less memory consuming and can be
more efficient in practice. It is also important to stress that domain consistency
on Generator does not depend on x−1(0). Thus, Filter-Generator is not
called during the resolution when a variable is instantiated to zero.
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4 Conclusion

We have introduced in this paper a new global constraint for mining generator
itemsets. For that we have proposed a polynomial propagator achieving domain
consistency. The global constraint can easily be used for modelling many data
mining problems.
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Abstract. Program verification is a key issue for critical applications
such as aviation, aerospace, or embedded systems. Bounded model check-
ing (BMC) and constraint programming (CBMC, CBPV, ...) approaches
are based on counter-examples that violate a property of the program to
verify. Searching for such counter-examples can be very long and costly
when the programs to check contains floating point computations. This
stems from the fact that existing search strategies have been designed
for discrete domains and, to a lesser extent, continuous domains. In [12],
we have introduced a set of variable choice strategies that take advan-
tages of the specificities of the floats, e.g., domain density, cancellation
and absorption phenomena. In this paper we introduce new sub-domain
selection strategies targeting domains involved in absorption and using
techniques derived from higher order consistencies. Preliminary experi-
ments on a significant set of benchmarks are very promising.

1 Introduction
Programs with floating-point computations control complex and critical systems
in numerous domains, including cars and other transportation systems, nuclear
energy plants, or medical devices. Floating-point computations are derived from
mathematical models on real numbers [8], but computations on floating-point
numbers are different from computations on real numbers. For instance, with
binary floating-point numbers, some real numbers cannot be represented (e.g.,
0.1 does not have an exact representation). Floating point arithmetic opera-
tors are neither associative nor distributive, and may be subject to phenomena
such as absorption and cancellation. Furthermore, the behavior of programs con-
taining floating-point computations varies with the programming language, the
compiler, the operating system, or the hardware architecture.

Figure 1 illustrates how the flow of a very simple program over the floats
(F) can differs from the expected flow over the reals (R). When interpreting the
program over reals, the instruction doThenPart should be executed. However,
an absorption on the floats (the value 1 is absorbed by 1e8f3) leads the program
through the else branch.
? This work was partially supported by ANR COVERIF (ANR-15-CE25-0002).
3 On simple precision and with rounding set to “to the nearest even”.



void f oo ( ){
f loat a = 1 e8 f ;
f loat b = 1 .0 f ;
f loat c = −1e8 f ;
f loat r = a + b + c ;
i f ( r >= 1 .0 f ){

doThenPart ( ) ;
} else {

doElsePart ( ) ;
}

}

Fig. 1. Motivation example

In [12], we have introduced a set of variable selection strategies based on
specific properties of floats like domain density, cancellation and absorption phe-
nomena. The resulting search strategies are much more efficient but do not really
scale for harder and more realistic benchmarks. Indeed, like in other applications
of constraint techniques, efficient solvers not only requires appropriate variable
selection strategies but also need relevant value selection strategies. So, this pa-
per focuses on value selection strategies for floating-point constraint solvers ded-
icated to the search of counter-examples in program verification applications.

Standard value selection strategies over the floats are derived from sub-
domain selection strategies used over the reals; sub-domains being generated
by using various splitting techniques, eg, x ≤ v or x > v with v = x+x

2 .

In this paper we introduces four new sub-domain selection strategies. The
first one, exploits absorption phenomena, the second one embraces ideas derived
from strong consistency and the two last ones extend strategies introduced in
[12]. We have evaluated these new sub-domain selection strategies on a significant
set of benchmarks originate with program verification. We implemented a set of
over 300 search strategies that are combinations of variable selection strategies
previously introduced, sub-domain selection strategies presented in the follow-
ing pages and variations of different criteria like filtering. All strategies were
implemented in Objective-CP, the optimization tool introduced in [11].

In summary, the contributions are new sub-domain selection strategies dedi-
cated to float system.

The rest of this article is organized as follows. Section 2 presents some no-
tations, and definitions necessary for understanding this document. Section 3
provides a brief reminder of the strategies presented in [12]. Section 4 explains
the new splitting strategies we propose. Section 5 is devoted to an analysis of
the experimental results. Finally, Section 6 discusses the work in progress and
the perspectives.



2 Notations and definitions
2.1 Floating point numbers
Floating point numbers approximate real numbers. The IEEE754-2008 standard
for floating point numbers [9] sets floating point formats, as well as, some float-
ing point arithmetic properties. The two most common formats defined in the
IEEE754 standard are simple and double floating point number precision which,
respectively, use 32 bits and 64 bits. A floating point number is a triple (s,m, e)
where s ∈ {0, 1} represents the sign, the mantissa m (also called significant),
which is p bits long, and, e the exponent [8]. A normalized floating point num-
ber is defined by:

(−1)s1.m× 2e

To allow gradual underflow, IEEE754 introduces denormalized numbers whose
value is given by:

(−1)s0.m× 20

Note that simple precision are represented with 32 bits and a 23 bits mantissa
(p = 23) while doubles use 64 bits and a 52 bits mantissa (p = 52).

2.2 Absorption
Absorption occurs when adding two floating point numbers with different order
of magnitude. The result of such an addition is the furthest from zero. For
instance, in C, using simple floating point numbers with a rounding mode set
“to the nearest even”, 108 + 1.0 evaluates to 108. Thus, 1.0 is absorbed by 108.

2.3 Notations
In the sequel, x, y and z denote variables and x, y and z, their respective
domains. When required, xF, yF and zF denote variables over F and xF, yF and
zF, their respective domains while xR, yR and zR denote variables over R and xR,
yR and zR, their respective domains. Note that xF = [xF, xF] = {xF ∈ F, xF ≤ xF ≤
xF} with xF ∈ F and xF ∈ F. Likewise, xR = [xR, xR] = {xR ∈ R, xR ≤ xR ≤ xR}
with xR ∈ F and xR ∈ F. Let xF ∈ F, then x+

F is the smallest floating point number
strictly superior to xF and x−

F is the biggest floating point number strictly inferior
to xF. In a similar way, x+[N ]

F is the N th floating point strictly superior to xF
and x−[N ]

F is the N th floating point strictly inferior to xF. In addition, given a
constraint c, vars(c) denotes the set of floating point variables appearing in c.
Finally, given a set s, |s| denotes the cardinality of s.

3 Search strategies based on floating-point properties
In [12], we have introduced a set of variable selection strategies based on specific
properties of floats like domain density, cancellation and absorption phenomena.
The resulting search strategies are much more efficient but do not really scale
for harder and more realistic benchmarks.
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Fig. 2. Sub-domains generated by splitAbs (x > 0 and y > 0)

4 Sub-domain selection strategies

In this section we introduce four new sub-domain selection strategies. The first
one takes advantage of absorption, the second is derived from strong consistency
filtering techniques and tries to reduce the domain at a limited cost.The two last
ones generalize sub-domain selection strategies presented in [26].

4.1 Absorption-based strategy

Let’s recall that absorption occurs when adding two floating point numbers with
different order of magnitude. The result of such an addition is the number the
furthest from zero.

The objective of the splitAbs strategy is to concentrate on the most relevant
absorption phenomena, in other words, giving priority to the sub-domains of x
and y most likely to lead to an absorption.

Before going into the details of this absorption-based sub-domain selection
strategy, let us recall the key points ofMaxAbs, the variable strategy introduced
in [12].MaxAbs is a variable selection strategy that picks the variable "absorbing
the most". More precisely, this variable selection strategy needs to branch on two
variables involved in absorption. The first variable –represented by x in Figure 2–
must have the highest absorption rate. After selection of variable x, strategy
MaxAbs examines addition and subtraction constraints to select a variable y, the
values of which are most absorbed by the values of by x. Coordinated branching
on these variables is performed to exploit the latent absorption.

Sub-domain selection strategy : splitAbs Once these two variables are
selected, the sub-domain selection heuristic will perform at most three splits
on each variable. Figure 2 illustrates an instance where two sub-domains are
generated (match with the case where domains are positive). It’s easy to extend
it to the others cases by symmetry. In this Figure, most interesting sub-domains
are for x : [2ex , x] and for y : y ∩ [0, 2ex−p−1] (where p is the mantissa size).
The first represents the sub-domain of x values absorbing y values. The second
represents the sub-domain of y totally absorbed by x.

Example 1. Consider the function in Figure 3 and assume that inputs are com-
ing from sensors, and their ranges are [0.0, 1e+04] for x, and [−16.0, 4.0] for
y. The else branch corresponds to an unstable state of the system. Deter-
mining if this state is reachable and from which input values is a legitimate
question. This problem is reduced to identifying if z can be equal to x which
corresponds to absorption. Figure 4 shows resulting sub-domains. This strat-
egy focuses on [8.1920009765625000e+03, 1.0000000000000000e+04] for x and



void f oo ( f loat x , f loat y ){
f loat z = x + 2 ∗ y ;
i f ( z != x )

systemOK ( ) ;
else

systemNOK ( ) ;
}

Fig. 3. A program with absorptions
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Fig. 4. Resulting sub-domains of unstable example
[−4.8828122089616954e−04, 4.8828122089616954e−04] for y which correspond
to domains involved in absorption. No solutions involving a value belonging to
another sub-domain exist and the initial filtering has no impact on those do-
mains. The unstable state is reachable with, for instance, values 1e+04 for x
and 2.44140625e−04 for y.

This strategy can also be combined with another strategy, which is called
whenever x has no values that absorb y.

4.2 Splitting strategy inspired by 3B-consistency : 3BSplit

Our next sub-domain splitting strategy, called 3Bsplit, is inspired by a higher
consistency named 3B-consistency [10]. 3B-Consistency is a relaxation on con-
tinuous domains of path consistency, a higher order extension of arc-consistency.
Roughly speaking, 3B-Consistency checks whether 2B-consistency (or Hull con-
sistency) can be enforced when the domain of a variable is reduced to the value
of one of its bounds in the whole system [3]. 3B-consistency is in practice very
effective on problems with multiple occurrence variables. However, insuring such
consistency could be costly: the 3B-algorithm might attempt many times to un-
successfully refute sub-domains near the bounds of the initial domain by means
of a 2B-consistency.

The 3Bsplit sub-domain selection also attempts to enforce the consistency at
the bounds of a domain at a single variable level. A key observation here is that
if a small sub-domain at the bounds of the initial domain, e.g. sd = [x, x+ δ], is
immediately refuted in the next search node, then the resulting domain, [x+δ, x],
offers a better lower bound than the one of the initial domain. Moreover, there
is probably room to still improve this bound if the same step is reiterated using
a wider sub-domain like [x, x+2δ]. Indeed, such a process is similar to a shaving
applied to the initial domain but without requiring additional domain state
management: in the case of a 3Bsplit, the capability to return to the initial
state is naturally supported by the search.

A sub-domain split might not be refuted immediately in the next search
node. It might be refuted either after exploring a deeper search sub-tree or it



Fig. 5. Illustration of 3BSplit

might provide one or more solutions. Both cases underline some difficulties to
improve the bound under examination. The next step of the splitting strategy
thus switch to the next bound or, if both bounds have been checked, to another
search node or strategy. Figure 5 illustrates 3Bsplit behavior.

To summarize, 3Bsplit exploits information on the sub-tree to decide whether
enforcing the current bound has a chance to be done effortlessly or if it would
be wiser to go to the next step. As a result, this strategy dynamically splits the
current domain according to the behavior of the search in sub-trees. Note also
that choosing an initial small sub-domain at the bounds of the domain is similar
to the next strategy (Section 4.3), i.e., 3Bsplit also provides opportunities to
find solutions in the neighbourhood of the current bounds.

4.3 Mixing sub-domain and enumeration

This sub-domain selection strategy extends strategies from [4]. We propose two
ways to extend these strategies. The first one Enum-N, enumerates N values of
both bound and one in the middle before considering the rest of the domain.
The second one, Delta-N, instead of enumerating each N values of the bounds,
builds the sub-domains implied by N floating point numbers. Due to the huge
number of evaluated strategies, the value of N is arbitrarily limited to 5 in the
experiment part.

Enum-N
This sub-domain selection strategy is a direct generalization of [4]. Generally, the
filtering process tightens the bounds until a support is found. This sub-domain
selection strategy is optimistic and hope that filtering will lead to find a solution
close to the bounds. To achieve this goal, it enumerates few values at the bounds.
Figure 6a illustrates this strategy. The domains is split in 2∗N +3 sub domains.
For instance, with N = 5, the 13 following domains will be generated :

• [min,min]
• · · ·
• [min+[N ],min+[N ]]
• [min+[N+1],mid−]
• [mid,mid]

• [mid+,max−[N+1]]
• [max−[N ],max−[N ]]
• · · ·
• [max,max]

If the cardinality of the domain is lower than 2 ∗N + 3, all values will be enu-
merated.

Delta-N The first objective of this strategy is to find a solution at the bounds.
Enumerating can lead the search to explore a deep sub-tree before finding a
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Fig. 6. Illustration of new strategies

solution or performing reduction. Here, considering the sub-domain implied by
N floating-point numbers instead of a single value, gives opportunities to the
filtering process to operate some pruning through propagation. It also improves
the chance to find a solution or to remove all N values without enumerating any
of them. This sub-domain selection strategy is very flexible. Indeed, by adapting
the value of N , the whole strategy behavior change. For instance, if N = |α|,
with α = [x, x+x

2 ], this sub-domain strategy becomes a classic bisection. Finally,
a dynamic modification of the value of N during the search can be interesting.
Starting the search by a classic bisection (N = |α|) and reducing its value might
be a good idea. Figure 6b illustrates this strategy. Regardless the value of N
and the cardinality of the domain, at most the 5 following sub-domains will be
generated :

• [min,min+[N ]]
• [min+[N+1],mid−]
• [mid,mid]

• [mid+,max−[N+1]]
• [max−[N ],max]

If the cardinality of the domain is lower than 2∗N+3, the last two sub-domains
will not be generated, and the first two will be balanced with respect to the
middle of the domain.

5 Experimental Evaluation

The experiments combine different variable selection strategies with sub-domain
selection strategies on a set of 49 benchmarks. They also consider variations on
the type of consistency for the strategies, sub-cuts, and the reselection (or not)
of the same variable at the next node. Sub-cut corresponds to an alternative sub-
domain selection strategy and is relevant for splitAbs and 3Bsplit. For splitAbs,
sub-cut is called when no absorptions occur. For 3Bsplit, it is called to refute
small sub-domains. In the state of the art, the standard strategy is based on
lexicographic variable ordering, and a bisection based on 2B-consistency. These
options result in no less than 325 unique strategies evaluated on all 49 bench-
marks.

All experiments were performed on a Linux system, with an Intel Xeon pro-
cessor running at 2.40GHz and with 12GB of memory. All strategies have been
implemented into the Objective-CP solver. All the floating point computations
are performed in simple precision and with a rounding mode “to the nearest
even”.

5.1 Benchmarks
The benchmarks used in these experiments come from test and program verifi-
cation. SMTLib [1], FPBench [6], and CBMC [2] (but also [5, 4, 7]) are the main



sources. In each case, the goal is to find a counter-example, hence the major-
ity of instances are satisfiable. The number of constraints and variables varies
from 2 to about 3000. Table summarizes thoses results of all the strategies on
the satisfiable instances can be found at www.i3s.unice.fr/~hzitoun/dp18/
benchmark.html.

5.2 Analysis
In results Tables, the standard strategy (lexicographic order with bisection, 2B
filtering at 5% and reselection allowed) is at the 194th position on 325 strategies.
So, 193 strategies among those introduced, are clearly more efficient than the
standard strategy for solving this kind of problem. The Virtual Best Strategy
is 120 times faster than the reference strategy. The best strategy (column 1) is
4 times faster than the reference strategy. Using the specificities of floats to
guide the search has a clear impact on the resolution time. Among the strategies
that are efficient on this set of benchmarks, the variable selection strategies
are based on lexicographic order, number of occurrences, density or absorption.
While strategies based on width, a conventional variable selection strategy for
integer domains, struggle to solve problems as soon as it becomes a bit realistic.
Strategies based on cardinality are also in the same cases. The best search based
on MaxCard and MaxWidth are at 160th and 161th positions.

Sub-domain selection strategies introduced in this article are working well.
Indeed, the faster strategy exploiting Delta-N is in second position, whereas
Enum-N is at 6th position. The best 3BSplit is placed at 11th. SplitAbs, for
its part, is at 112th position. SplitAbs performance are clearly related to the
percentage of absorption of the problem. Indeed, as shown in the online tables,
the set of benchmarks limited to those with at least 5% of absorption are resolved
without timeout. All these strategies perform better than the standard one.

Eight of the 10 best strategies prohibit the repeated selection of a variable
at subsequent search nodes. Among the 10 worst, only one of them prohibits
reselection. It appears that “reselection” impacts the ability to deliver solutions
faster.

6 Conclusion
A previous article proposed a set of variable selection strategies using the speci-
ficities of floats to guide the search. These variable selection strategies improve
the search of a counter-example outlining a property violation in a program to
verify, but aren’t sufficient to scale for harder and more realistic benchmarks.
Dedicated sub-domain selection strategies for floats are needed. Contributions of
this article are a set of sub-domain selection strategies over floats. The first one,
exploits absorption phenomena, the second one embraces ideas derived from
strong consistency and the two last ones extend strategies introduced in [4].
These strategies are compared on a set of satisfiable benchmarks. Several strate-
gies presented, perform well, and obtain much better results than the standard
strategy used to solve this kind of problem.



References

1. Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org, 2016.

2. Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ansi-c
programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 168–176, 2004.

3. Hélène Collavizza, François Delobel, and Michel Rueher. Comparing partial con-
sistencies. Reliable Computing, pages 213–228, 1999.

4. Hélène Collavizza, Claude Michel, and Michel Rueher. Searching critical values
for floating-point programs. In Testing Software and Systems - 28th IFIP WG
6.1 International Conference, ICTSS 2016, Graz, Austria, October 17-19, 2016,
Proceedings, pages 209–217, 2016.

5. Hélène Collavizza, Michel Rueher, and Pascal Van Hentenryck. Cpbpv: A
constraint-programming framework for bounded program verification. Constraints,
15(2):238–264, 2010.

6. Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Chen Qiu, Alexander
Sanchez-Stern, and Zachary Tatlock. Toward a standard benchmark format and
suite for floating-point analysis. In Sergiy Bogomolov, Matthieu Martel, and
Pavithra Prabhakar, editors, Numerical Software Verification, pages 63–77, Cham,
2017. Springer International Publishing.

7. Vijay D’Silva, Leopold Haller, Daniel Kroening, and Michael Tautschnig. Numeric
bounds analysis with conflict-driven learning. In Cormac Flanagan and Barbara
König, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 48–63, 2012.

8. David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.

9. IEEE. IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard,
754, 2008.

10. Olivier Lhomme. Consistency techniques for numeric csps. In Proceedings of the
13th International Joint Conference on Artifical Intelligence - Volume 1, IJCAI’93,
pages 232–238, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

11. Pascal Van Hentenryck and Laurent Michel. The objective-cp optimization system.
In Principles and Practice of Constraint Programming: 19th International Confer-
ence, CP 2013, Uppsala, Sweden, September 16-20, 2013. Proceedings, pages 8–29,
Berlin, Heidelberg, 2013.

12. Heytem Zitoun, Claude Michel, Michel Rueher, and Laurent Michel. Search strate-
gies for floating point constraint systems. In Principles and Practice of Constraint
Programming - 23rd International Conference, CP 2017, Melbourne, VIC, Aus-
tralia, August 28 - September 1, 2017, Proceedings, pages 707–722, 2017.


